This version: Nov. 2001 Previous version: Aug. 1998

MSM7570-01

OKI Semiconductor

Multi-Function ADPCM CODEC

GENERAL DESCRIPTION

The MSM7570-01, developed for advanced digital cordless telephone systems, is a single channel ADPCM CODEC IC which performs mutual transcoding between the analog voice band signal and 32 kbps ADPCM serial data.

This device includes DTMF Tone and several types of tone generation, transmit/receive data mute and gain control, side-tone path and gain control, and VOX function.

Using advanced ciruit technology, the device operates using a single 5 V power supply and have low power consumption.

FEATURES

- Single 5 V Power Supply Operation
- ADPCM Algorithm :

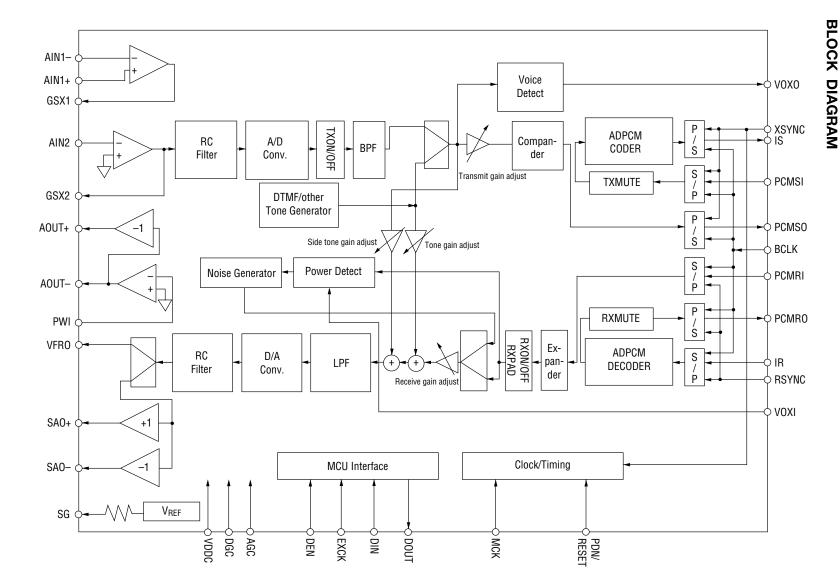
V_{DD}: 4.5 V to 5.5 V

A-law/µ-law Selectable

70 mW Typ. $(V_{DD} = 5.0 \text{ V})$

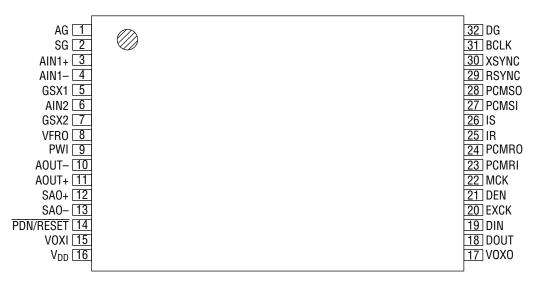
0.5 mW Typ. (V_{DD} = 5.0 V)

Externally Adjustable Gain


ITU-T G.726 (32 kbps, 24 kbps, 16 kbps)

- Transmit/Receive Full-Duplex Single Channel Operation
- Transmit/Receive Synchronous Mode Only
- PCM Data Format :
- Serial PCM/ADPCM Transmission Data Rate :64 kbps to 2048 kbps
- Low Power Consumption Operating Mode :

Power-Down Mode :


- Two Analog Input Amplifier Stages :
- Analog Output Stage :
- Master Clock Frequency :

- Push-pull Drive (direct drive of $350 \Omega + 120 \text{ nF}$) 12.288/19.200 MHz Selectable
- Transmit/Receive Mute, Transmit/Receive Programmable Gain Control
- Side Tone Path with Programmable Attenuation (8-step Level Adjustment)
- Built-in DTMF Tone Generator
- Built-in Various Ringing/Function Tones Generator
- Built-in Various Ring Back Tone Generator
- Serial MCU Interface Control
- Built-in Sounder Driving Amplifier
- Built-in VOX Control Transmit side : Voice Signal Detect Receive side : Background Noise Generation
- Characteristic Evaluation Board.
- Package:
 - 32-pin plastic TSOP (TSOP(1)32-P-0814-0.50-1K) (Product name: MSM7570-01TS-K)

2/27

PIN CONFIGURATION (TOP VIEW)

32-Pin Plastic TSOP

PIN AND FUNCTIONAL DESCRIPTIONS

AIN1+, AIN1-, AIN2, GSX1, GSX2

Transmit analog inputs and the output for transmit gain adjustment.

AIN1– (AIN2) connects to the inverting input of the internal transmit amplifier. AIN1+ connects to non-inverting input of the internal transmit amplifier. GSX1 (GSX2) connects to the internal transmit amplifier output. Refer to Fig.1 for gain adjustment.

VFRO, AOUT+, AOUT-, PWI

Receive analog outputs and the output for receive gain adjustment.

VFRO is the receive filter output. AOUT+ and AOUT– are differential analog signal outputs which can directly drive $Z_L = 350 \Omega + 120 \text{ nF}$ or a 1.2 k Ω load. Refer to Fig.1 for gain adjustment.

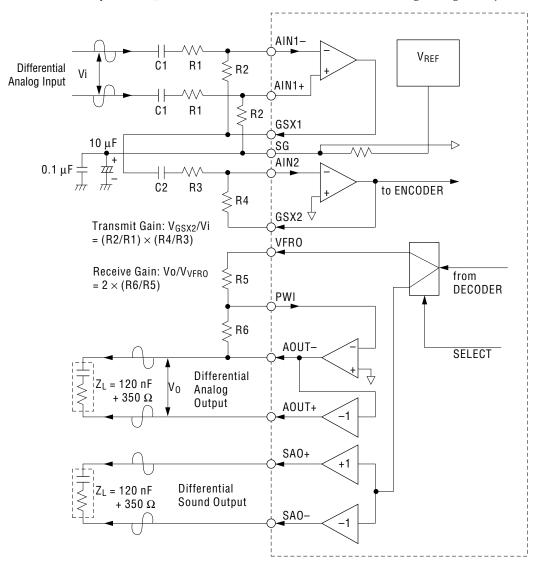


Figure 1 Analog Input/Output Interface

SAO+, SAO-

Differential analog outputs for sound output.

Control register data CR4-B5 determines the output pins (AOUT+ and AOUT- /SAO+ and SAO-) for the voice signal and an acoustic component of the sound tone, DTMF tone, R tone, F tone, and various types of tones at either the VFRO pin or the SAO+ and SAO- pins. The output load conditions of these pins are the same as those of AOUT+ and AOUT-.

SG

Analog signal ground.

The output voltage of this pin is approximately 2.4 V. Put the bypass capacitors $(10 \,\mu\text{F} \text{ in parallel} \text{ with } 0.1 \,\mu\text{F}$ ceramic type) between this pin and AG to get the specified noise characteristics. During power-down, this output voltage is 0 V. The SG voltage if necessary should be used via a baffer.

AG

Analog ground.

DG

Digital ground.

This ground is separated from the analog signal ground pin (AG). The DG pin must be kept as close as possible to AG on the PCB.

V_{DD}

+5 V power supply.

PDN/RESET

Power down and reset control input.

A "0" level makes the IC enter a power down state. At the same time, all control register data is reset to the initial state. Set this pin to "1" during normal operating mode. The power down state is controlled by a logical OR with CR0-B5 of the control register. When using PDN/RESET for power down and reset control, set CR0-B5 to digital "0". The reset width (during "L") should be 200 ns or more.

Be sure to reset the control registers by executing this power down to keep this pin to digital "0" level for 200ns or longer after the power is turned on and V_{DD} exceeds 4.5V.

MCK

Master clock input.

The frequency must be 12.288 MHz or 19.2 MHz. The applied clock frequency is selected by the control register data CR0-B6. The master clock signal may be asynchronous with BCLK, XSYNC, and RSYNC.

PCMSO

Transmit PCM data output. PCM is output from MSB in synchronization with the rising edge of BCLK and XSYNC.

PCMSI

Transmit PCM data input.

This signal is converted to the transmit ADPCM data. PCM is shifted in synchronization with the falling edge of BCLK. Normally, this pin is connected to PCMSO.

PCMRO

Receive PCM data output.

PCM is the output signal after ADPCM decoder processing. This signal is output serially from MSB in synchronization with the rising edge of BCLK and RSYNC.

PCMRI

Receive PCM data input.

PCM is shifted on the rising edge of the BCLK and input from MSB. Normally, this pin is connected to PCMRO.

IS

Transmit ADPCM signal output.

After having encoded PCM with ADPCM, this signal is output from MSB in synchronization with the rising edge of BCLK and XSYNC. This pin is an open drain output and remains in a high impedence state during power-down. IS requires a pull-up resistor.

IR

Receive ADPCM signal input.

This input signal is shifted serially on the falling edge of BCLK in synchronization with RSYNC and input from MSB.

BCLK

Shift clock input for the PCM data (PCMSO, PCMSI, PCMRO, PCMRI) and the ADPCM data(IS, IR) .

The frequency is set in the 64 kHz to 2048 kHz range.

XSYNC

Transmit PCM and ADPCM data 8 kHz synchronous signal input. Synchronize this signal with BCLK signal . XSYNC is used to indicate the MSB of the transmit serial PCM and ADPCM data stream.

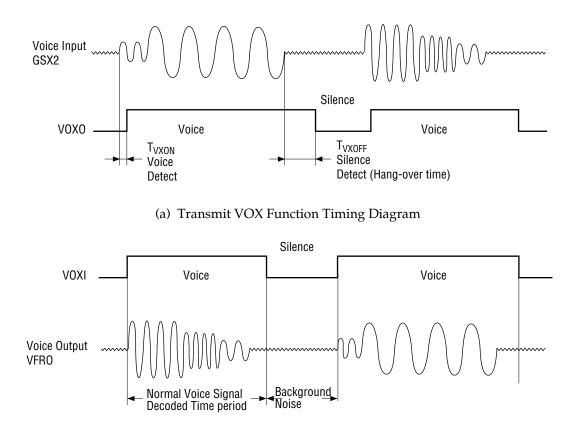
Be sure to input the XSYNC signal because it is also used as the input of the timing generator.

RSYNC

Receive PCM and ADPCM data synchronous signal input.

Synchronize this signal with BCLK signal. RSYNC is used to indicate the MSB of the receive serial PCM and ADPCM data stream.

voxo


Transmit VOX function signal output.

VOX function recognizes the presence or absence of the transmit voice signal by detecting the signal energy. "1" and "0" levels set on this pin correspond to the presence and the absence of voice, respectively. This result appears at the register data CR7-B7. The signal energy detect threshold is set by the control register data CR6-B6, B5.

νοχι

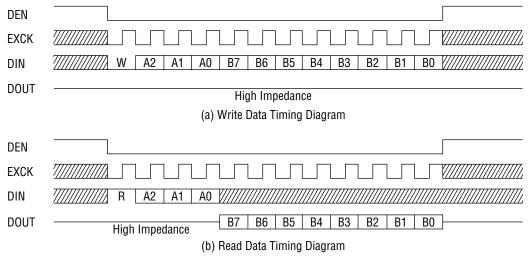
Signal input for receive VOX function.

A "1" level at VOXI indicates the presence of a voice signal. The decoder block processes normal receive signal, and the voice signal appears at analog output pins. The "0" level indicates the absence of a voice signal. Background noise generated in this device is transferred to the analog output pins. The background noise amplitude is set by the control register CR6. Because this signal is ORed with the register data CR6-B3, set the control register data CR6-B3 to digital "0".

(b) Receive VOX Function (CR6-B3: digital "0") Timing Diagram

Note: VOXO, VOXI functions become valid when setting CR6-B7 to digital "1".

Figure 2 VOX Function


DEN, EXCK, DIN, DOUT

Serial control ports for MCU interface.

Reading and writing data are performed by an external MCU through these pins. Eight registers with eight bits are provided on the devices.

DEN is the "Enable" control signal input, EXCK is the data shift clock input, DIN is the address and data input, and DOUT is the data output.

Fig.3 shows the input/output timing diagram.

Figure 3 MCU Interface Input/Output Timing

Table 1 shows the register map.

Nama	Α	ddres	ss			Cor	ntrol and	Detect [Data			R/W
Name	A2	A1	A0	B7	B7 B6 B5		B4	B3	B2	B1	B0	R/W
CR0	0	0	0	Α/μ SEL	MCK SEL	PDN ALL	_		_	_	PDN SAO/AOUT	R/W
CR1	0	0	1	MODE1	MODE0	TX RESET	RX RESET	TX MUTE	RX MUTE	_	RX PAD	R/W
CR2	0	1	0	TX ON/OFF	TX GAIN2	TX GAIN1	TX GAIN0	RX ON/OFF	RX GAIN2	RX GAIN1	RX GAIN0	R/W
CR3	0	1	1	Side Tone GAIN2	Side Tone GAIN1	Side Tone GAIN0	TONE ON/OFF	TONE GAIN3	TONE GAIN2	TONE GAIN1	TONE GAINO	R/W
CR4	1	0	0	DTMF/ OTHERS SEL	TONE SEND	SAO/ VFRO	TONE4	TONE3	TONE2	TONE1	TONEO	R/W
CR5	1	0	1		_	_	_			_		R/W
CR6	1	1	0	VOX ON/OFF	ON LVL1	ON LVL0	OFF TIME	VOX IN	RX NOISE LEVEL SEL		RX NOISE LVL0	R/W
CR7	1	1	1	VOX OUT	TX NOISE LVL1	TX NOISE LVL0	_					R

Table-1

R/W : Read/Write enable R : Read only register.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage	V _{DD}	—	-0.3 to +7	V
Analog Input Voltage	V _{AIN}	—	-0.3 to V _{DD} + 0.3	V
Digital Input Voltage	V _{DIN}	—	-0.3 to V _{DD} + 0.3	V
Storage Temperature	T _{STG}	—	-55 to +150	°C

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Power Supply Voltage	V _{DD}	Voltage must be fixed	4.5	_	5.5	V
Operating Temperature	Та	—	-25	+25	+70	°C
		MCK, XSYNC, RSYNC, PCMRI,				
Digital Input High Voltage	V _{IH}	PCMSI, BCLK, IR, PDN/RESET,	2.2	—	V _{DD}	V
		DEN, EXCK, DIN				
		MCK, XSYNC, RSYNC, PCMRI,				
Digital Input Low Voltage	VIL	PCMSI, BCLK, IR, PDN/RESET,	0	—	0.6	V
		DEN, EXCK, DIN				
Maatar Clock Fraguenov	f _{MCK1}	MCK (CR0-B6 = "0")	-0.01%	12.288	+0.01%	MHz
Master Clock Frequency	f _{MCK2}	MCK (CR0–B6 = "1")	-0.01%	19.200	+0.01%	MHz
Bit Clock Frequency	f _{BCK}	BCLK	64	_	2048	kHz
Synchronous Signal Frequency	f _{SYMC}	XSYNC, RSYNC	_	8.0	_	kHz
Clock Duty Ratio	D _C	MCK, BCLK, EXCK	30	50	70	%
		MCK, XSYNC, RSYNC, PCMRI,				
Digital Input Rise Time	t _{lr}	PCMSI, BCLK, IR, PDN/RESET,	—	_	50	ns
		DEN, EXCK, DIN				
		MCK, XSYNC, RSYNC, PCMRI,				
Digital Input Fall Time	t _{lf}	PCMSI, BCLK, IR, PDN/RESET,	—	—	50	ns
		DEN, EXCK, DIN				
	t _{XS}	BCLK to XSYNC	100	_		ns
Transmit Sync Signal Setting Time	t _{SX}	XSYNC to BCLK	100	_	_	ns
Dessive Ourse Cinnel Cotting Time	t _{RS}	BCLK to RSYNC	100	_		ns
Receive Sync Signal Setting Time	t _{SR}	RSYNC to BCLK	100	_		ns
Synchronous Signal Width	t _{WS}	XSYNC, RSYNC	1 BCLK	_	100	μs
PCM, ADPCM Set-up Time	t _{DS}	—	100		_	ns
PCM, ADPCM Hold Time	t _{DH}	_	100			ns
Digital Output Land	R _{DL}	IS (Pull-up Resistor)	500			Ω
Digital Output Load	C _{DL}	IS, PCMSO, PCMRO, VOXO, DOUT		_	100	pF
Bypass Capacitors for SG	C _{SG}	SG to AG	10 + 0.1		_	μF

ELECTRICAL CHARACTERISTICS

DC and Digital Interface Characteristics

		(V _{DD}	= 4.5 V to	5.5 V, Ta =	= −25°C to	+70°C)
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
		Operating Mode,		14	28	m1
Power Supply Current	I _{DD1}	No Signal, $(V_{DD} = 5.0 \text{ V})$	_	14	20	mA
	I _{DD2}	Power Down Mode, $(V_{DD} = 5.0 \text{ V})$		0.1	0.2	mA
Input High Voltage	VIH	—	2.2	—	V _{DD}	v
Input Low Voltage	VIL	—	0.0	_	0.6	v
Innut Lookana Queent	I _{IH}	$V_I = V_{DD}$	_		2.0	μA
Input Leakage Current	II.	$V_I = 0 V$	_	_	0.5	μA
Output Low Voltage	V _{OL}	1 LSTTL, Pull-up: 500 Ω	0.0	0.2	0.4	V
Output Leakage Current	I ₀	IS	—	—	10	μA
Input Capacitance	CIN	—	—	5		рF
Output Resistance	R _{OSG}	SG	_	25	50	kΩ
SG Warm-up Time	T _{SG}	SG \leftrightarrow GND 10+0.1 μ F (Rise time to 90% of max. level)	_	700	—	ns

Transmit Analog Interface Characteristics

 $(V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Ta} = -25^{\circ}\text{C to } +70^{\circ}\text{C})$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input Resistance	R _{INX}	AIN1+, AIN1-, AIN2	10	_	_	MΩ
Output Load Resistance	R _{LGX}	GSX1, GSX2	20	_	_	kΩ
Output Load Capacitance	C _{LGX}	GSX1, GSX2	_	_	100	рF
Output Amplitude	V _{OGX}	GSX1, GSX2, R_L = 20 k Ω	_	_	*2.226	V _{PP}
Input Offset Voltage	VOFGX	Pre-OPAMPs	-20	_	+20	mV

* $-3.0 \text{ dBm} (600 \Omega) = 0 \text{ dBm0}, + 3.14 \text{ dBm0} = 2.226 \text{ V}_{\text{PP}} (\text{A-law})$ $-3.0 \text{ dBm} (600 \Omega) = 0 \text{ dBm0}, + 3.17 \text{ dBm0} = 2.226 \text{ V}_{\text{PP}} (\mu\text{-law})$

			(VDE) = 4.5 V IO	5.5 V, Ta =	= -25 0 10	+/0-0)
Parameter	Symbol	C	ondition	Min.	Тур.	Max.	Unit
Input Resistance	RINPW	PWI		10	—		MΩ
Output Load Desistance	R _{LVF}	VFRO		20	—	_	kΩ
Output Load Resistance	R _{LAO}	AOUT+, AO	UT-, SAO+, SAO-	1.2	_		kΩ
Output Consoitonoo	C _{LVF}	VFRO		_	_	100	pF
Output Capacitance	C _{LAO} AOUT+, AOUT–, SAO+, SAO–		_	—	100	рF	
	V _{OVF}	VFRO,	$R_L = 20 \ k\Omega$			*2.226	V _{PP}
		AOUT+,	R _L = 1.2 kΩ		—	*2.226	V _{PP}
Output Voltage Level	V _{OAO}	AOUT-, SAO+, SAO-	Z _L = 350 Ω + 120 nF(See Fig.1)	_	_	*2.226	V _{PP}
	V _{OFVF}	VFRO		-100		+100	mV
Offset Voltage	V _{OFAO} AOUT+, AOUT– (GAII Power amp only) SAC		,	-20	_	+20	mV
Open Loop Gain	G _{DB}		(0.3 to 3.4 kHz, + 120 nF)(See Fig.1)	40	_	_	dB

Receive Analog Interface Characteristics

 $(V_{PP} - 4.5 V \text{ to } 5.5 V \text{ Ta} - -25^{\circ}\text{C} \text{ to } +70^{\circ}\text{C})$

* $-3.0 \text{ dBm} (600 \Omega) = 0 \text{ dBm0}, + 3.14 \text{ dBm0} = 2.226 \text{ V}_{\text{PP}} (\text{A-law})$ $-3.0 \text{ dBm} (600 \Omega) = 0 \text{ dBm0}, + 3.17 \text{ dBm0} = 2.226 \text{ V}_{\text{PP}} (\mu\text{-law})$

MSM7570-01

AC Chracteristics

 $(V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Ta} = -25^{\circ}\text{C to } +70^{\circ}\text{C})$

			Condition	(*00				
Parameter	Symbol	Freq. (Hz)	Level (dBm0)	Others	Min.	Тур.	Max.	Unit
	L _{OSS} T1	0 to 60	()		25	_	_	dB
	L _{OSS} T2	300 to 3000			-0.15	_	+0.20	dB
Transmit Frequency	L _{OSS} T3	1020	•		Reference			dB
Response	L _{OSS} T4	3300	0		-0.15	_	+0.80	dB
	L _{OSS} T5	3400			0	_	0.80	dB
	L _{OSS} T6	3968.75			13	_	_	dB
	L _{OSS} R1	0 to 3000			-0.15	_	+0.20	dB
Dessive Frequency	L _{OSS} R2	1020				Reference		dB
Receive Frequency	L _{OSS} R3	3300	0	—	-0.15	_	+0.80	dB
Response	L _{OSS} R4	3400			0	_	0.80	dB
	L _{OSS} R5	3968.75			13	—	_	dB
	SD T1		3		35	_		dB
Transmit Signal to Distortion Ratio	SD T2		0		35		_	dB
	SD T3	1020	-30	(*1)	35			dB
	SD T4		-40		28			dB
	SD T5		-45		23			dB
	SD R1		3		35			dB
Receive Signal	SD R2		0		35	_	_	dB
to Distortion Ratio	SD R3	1020	-30	(*1)	35	_	—	dB
IO DISIOFIIOIT HALIO	SD R4		-40		28			dB
	SD R5		-45		23			dB
	GT T1		3		-0.2		+0.2	dB
Transmit Gain	GT T2		-10			Reference		dB
Tracking	GT T3	1020	-40	[-0.2		+0.2	dB
ITAUNITY	GT T4		-50		-0.5	—	+0.5	dB
	GT T5		-55		-1.2		+1.2	dB
	GT R1		3		-0.2		+0.2	dB
Receive Gain	GT R2		-10			Reference		dB
Tracking	GT R3	1020	-40	[-0.2	_	+0.2	dB
indukiliy	GT R4		-50		-0.5		+0.5	dB
	GT R5		-55		-1.2		+1.2	dB

*1 Use the P-message weighted filter

MSM7570-01

AC Characteristics (Continued)

 $(V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Ta} = -25^{\circ}\text{C to } +70^{\circ}\text{C})$

			Condition					
Parameter	Symbol	Freq. (Hz)	Level (dBm0)	Others	Min.	Тур.	Max.	Unit
Idle Channel Noise	N _{IDLT}	—	AIN = SG	(*1)	—	_	-68 (-71)	dBm0p
Idle Channel Noise	N _{IDLR}	_	_	(*1) (*2)	_	_	-72 (-75)	(dBmp)
Absolute Signal	A _{VT}	1020	0	GSX2	0.488	0.548 (*3)	0.615	Vrms
Amplitude	A _{VR}	1020	U	VFRO	0.488	0.548 (*3)	0.615	Vrms
Power Supply Noise	P _{SRRT}	Noise Freq.	Noise Level		30			dB
Rejection Ratio	PSRRR	: 0 to 50 kHz	: 50 mV _{PP}		30			dB
	t _{SDX}				0		200	ns
	t _{SDR}				0		200	ns
Digital Output Delay Time	t _{XD1} t _{RD1}		1 LSTTL + 100 pF,	See	0		200	ns
PCM and ADPCM Interface	t _{XD2} t _{RD2}	_	Pull-up: 500 Ω	Fig.4	0	_	200	ns
	t _{XD3} t _{RD3}				0	_	200	ns
	t _{M1}				50	_	_	ns
	t _{M2}				50			ns
	t _{M3}				50			ns
	t _{M4}				50	_	—	ns
Serial Port Digital	t _{M5}		C _L = 100 pF		100		—	ns
Input/Output Setting	t _{M6}	—		See	50	—	—	ns
Time	t _{M7}			Fig.5	50			ns
	t _{M8}				0	—	50	ns
	t _{M9}				50			ns
	t _{M10}				50			ns
	t _{M11}				0	—	50	ns
Shift Clock Frequency	f _{EXCK}	—		EXCK	—	—	10	MHz

*1 Use the P-message weighted filter

"11111111"(m-law)

*3 0.548 Vrms = 0 dBm0 = -3.0 dBm

Note: All ADPCM coder and decoder characteristics comply with ITU-T Recommendation G.726.

^{*2} PCMRI input code "11010101"(A-law)

				= 4.5 V to	5.5 V, Ta =	= −25°C to	+70°C)
Parameter	Symbol	Condi	tion	Min.	Тур.	Max.	Unit
Fraguenov Difference	D _{FT1}	DTMF Tones	-7	_	+7	Hz	
Frequency Difference	D _{FT2}	Other Tones		-7		+7	Hz
	V _{TL}	Tronomit Tonoo	DTMF (Low)	-18	-16	-14	dBmO
Original (reference)	V _{TH}	Transmit Tones (Gain setting 0 dB)	DTMF (High) and Other Tones	-16	-14	-12	dBmO
Tone Signal Level	V _{RL}	Receive Tones	DTMF (Low)	-10	-8	-6	dBmO
*4	V _{RH}	(Tone generator gain setting –6 dB)	DTMF (High) and Other Tones	-8	-6	-4	dBmO
Relative Level of DTMF Tones	R _{DTMF}	V _{TH} /V _{TL} , V _{RH} /V _{RL}		1	2	3	dBmO

AC Characteristics (DTMF and Other Tones)

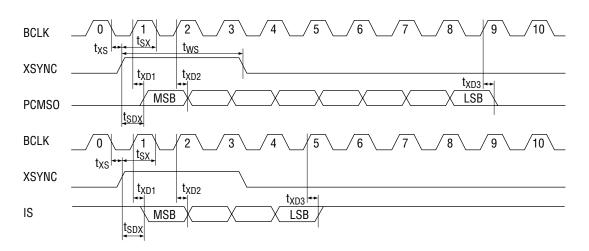
*4 Does not contain the setting value set for the programmable gain

AC Characteristics (Programmable Gain Stages)

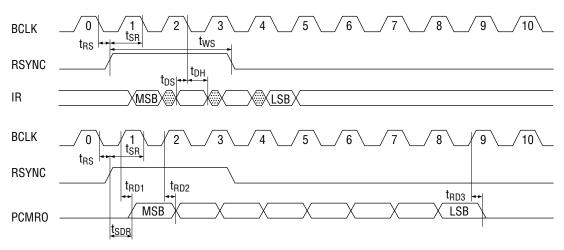
 $(V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Ta} = -25^{\circ}\text{C to } +70^{\circ}\text{C})$

Parameter	Parameter Symbol		Min.	Тур.	Max.	Unit
Gain Accuracy	D _G	All gain stages, to programmed value	-1	0	+1	dB

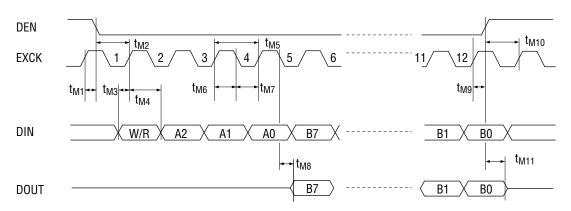
AC Characteristics (VOX Function)


 $(V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Ta} = -25^{\circ}\text{C to } +70^{\circ}\text{C})$

Parameter	Symbol	C	Condition			Max.	Unit
Transmit VOX Detect Time	t _{VXON}	$\text{OFF} \rightarrow \text{ON}$	VOXO,	_	10 ^{*5}		ms
(Voice Signal ON/OFF Detect Time)	t _{VXOF}	$\text{ON} \rightarrow \text{OFF}$	See Fig.2	150/310	160/320	170/330	ms
Transmit VOX Detect Level							
Accuracy	D _{VX}	To the values	(CR6-B6, B5)	-2.5	0	+2.5	dB
(Threshold Level)							


*5 When single tone is input at 1000 Hz.

TIMING DIAGRAM


Transmit Side PCM/ADPCM Data Interface

Receive Side PCM/ADPCM Data Interface

Serial Port Data Transfer for MCU Interface

FUNCTIONAL DESCRIPTION

Control Registers

(1) CR0 (Basic operating mode)

	B7	B6	B5	B4	B3	B2	B1	B0
CRO								PDN
UNU	A/μ SEL	MCK SEL	PDN ALL				_	SAO/AOUT
Initial Value	0	0	0	0	0	0	0	0

Note : Initial Value : Reset state by PDN/RESET

B7 ... PCM Companding law select;

0/μ-law, 1/A-law 0/12.288 MHz, 1/19.200 MHz

B6 ... Master clock frequency select; 0/12.2 B5 ... Power down (entire system); 0/Pov

em); 0/Power on, 1/Power down

When using this data for power down control, set pin PDN/RESET at "1" level. The control registers are not reset by this signal.

- B2 ... Not used
- B1 ... Not used
- B0 ... Power Down for Sound output amps: (SAO+, SAO–), or Receiver output amp (AOUT+, AOUT–, VFRO);

If this data is set to digital "1", either a pair of sound amplifiers or a pair of reciver amplifiers enters the power down state depending on the set data on CR4-B5. If this data is set to digital "0", sound amplifiers and receiver amplifiers are in the power-on state.

B4, B3 ... Not used (These pins are used to test the devise. They should be set to "0" during normal operation.)

OKI Semiconductor

	B7	B6	B5	B4	B3	B2	B1	B0
CR1	MODE1	MODE0	TX RESET	RX RESET	TX MUTE	RX MUTE	_	RX PAD
Initial Value	0	0	0	0	0	0	0	0

(2) CR1 (ADPCM block operating mode)

B7, B6 ... ADPCM data compression algorithm select;

- (0, 0): 32 kbps
- (0, 1): 64 kbps (data through)
- (1, 0): 24 kbps
- (1, 1): 16 kbps

B5 ... ADPCM of transmit reset (specified by G.726);

- B4 ... ADPCM of receive reset (specified by G.726);
- B3 ... ADPCM transmit data mute,
- B2 ... ADPCM receive data mute,

B1 ... Not used

B0 ... Receive side PAD,

1/inserted,12 dB loss 0/no PAD

1/Reset*

1/Reset*

1/Mute

1/Mute

* The reset width should be $125 \,\mu s$ or more.

The transmitter and receiver can not be reset separately They must be reset at the same time. (3) CR2 (PCM CODEC operational mode setting and transmit/receive gain adjustment)

	B7	B6	B5	B4	B3	B2	B1	B0
CR2	TX ON/OFF	TX GAIN2	TX GAIN1	TX GAINO	RX ON/OFF	RX GAIN2	RX GAIN1	RX GAINO
Initial Value	0	0	1	1	0	0	1	1

B7 ... PCM Coder disable; 0/Enable, 1/Disable (transmit PCM idle pattern)
B6, B5, B4 ... Transmit gain adjustment, refer to Table-2.
B3 ... PCM Decoder disable; 0/Enable, 1/Disable (receive PCM idle pattern)

B3 ... PCM Decoder disable; 07 Enable, 17 Disable (receive PCM fale pattern, B2, B1, B0 ... Receive gain setting, refer to Table-2.

B 6	B5	B4	Transmit Gain	B2	B1	B0	Receive Gain
0	0	0	6 dB	0	0	0	6 dB
0	0	1	-4 dB	0	0	1	-4 dB
0	1	0	-2 dB	0	1	0	-2 dB
0	1	1	0 dB	0	1	1	0 dB
1	0	0	+2 dB	1	0	0	+2 dB
1	0	1	+4 dB	1	0	1	+4 dB
1	1	0	+6 dB	1	1	0	+6 dB
1	1	1	+8 dB	1	1	1	+8 dB

Table-2

This programmable gain table should be assigned, not only for transmit/receive voice signal and the transmitted DTMF and other tones. The transmission of these tone signals is enabled by the CR4-B6 data described later. The original (reference) signal amplitude of these tones is analogically defined as follows.

For example, when selecting +8 dB (B6, B5, B4) = (1,1,1) as a transmit gain, each tone signal amplitude with an analogical expression on the pin PCMSO becomes as follows.

DTMF low-group tones -8 dBm0 DTMF high-group tones and other tones -6 dBm0

Gain setting for the side tone (path to receive side from transmit side) and the receive side tone is performed by register CR3.

(4) CR3 (Side tone and other tone generator gain setting)

	B7	B6	B5	B4	B3	B2	B1	B0
000	Side. Tone	Side. Tone	Side. Tone	TONE	TONE	TONE	TONE	TONE
CR3	GAIN2	GAIN1	GAIN0	ON/OFF	GAIN3	GAIN2	GAIN1	GAIN0
Initial Value	0	0	0	0	0	0	0	0

B7, B6, B5 ... Side tone path gain setting, refer to Table-3.

B4 ... Tone generator enable; 0/Disable, 1/Enable

B3, B2, B1, B0 ... Tone generator gain adjustment for receive side, refer to Table-4

B7	B6	B5	Side Tone Path Gain
0	0	0	OFF
0	0	1	–21 dB
0	1	0	–19 dB
0	1	1	–17 dB
1	0	0	–15 dB
1	0	1	–13 dB
1	1	0	–11 dB
1	1	1	-9 dB

Table-3

Table-4

B 3	B2	B1	B0	Tone Generator Gain	B 3	B2	B1	B0	Tone Generator Gain
0	0	0	0	–36 dB	1	0	0	0	–20 dB
0	0	0	1	–34 dB	1	0	0	1	–18 dB
0	0	1	0	–32 dB	1	0	1	0	–16 dB
0	0	1	1	–30 dB	1	0	1	1	-14 dB
0	1	0	0	–28 dB	1	1	0	0	-12 dB
0	1	0	1	–26 dB	1	1	0	1	-10 dB
0	1	1	0	–24 dB	1	1	1	0	-8 dB
0	1	1	1	–22 dB	1	1	1	1	-6 dB

The tone generator gain setting table for the receive side, as shown in Table-4, depends upon the following reference level.

DTMF low-group tones –2 dBm0 DTMF high-group tones and others 0 dBm0

For example, when selecting -6 dB (B3, B2, B1, B0) = (1, 1, 1, 1) as a tone generator gain, each DTMF tone signal amplitude on SAO+/SAO- or VFRO is as follows.

DTMF low-group tone–8 dBm0

DTMF high-group tone or other tones-6 dBm0

(5) CR4 (Tone	genereator	operating	mode and	frequency select)
• • •	0	1 0		1 / /

	B7	B 6	B5	B4	B3	B2	B1	B0
004	DTMF/OTHERS	TONE	SAO/					TONEO
CR4	SEL	SEND	VFRO	TONE4	TONE3	TONE2	TONE1	TONE0
Initial Value	0	0	0	0	0	0	0	0

B7 ... DTMF or other tones select; 0/Others, 1/DTMF

B6 ... Tone transmit enable (Transmit side); 0/Voice signal (transmit), 1/Tone transmit B5 ... Tone output pin select (Receive side); 0/VFRO, 1/SAO+ and SAO–

B4, B3, B2, B1, B0 ... Tone frequency setting, referred to Table-5-1 and 5-2.

(a) B7 = 1 (DTMF tone)

Table-5-1

B 4	B 3	B2	B1	B 0	Frequency	B4	B 3	B2	B1	B 0	Frequency
*	0	0	0	0	697 Hz + 1209 Hz	*	1	0	0	0	852 Hz + 1209 Hz
*	0	0	0	1	697 Hz + 1336 Hz	*	1	0	0	1	852 Hz + 1336 Hz
*	0	0	1	0	697 Hz + 1477 Hz	*	1	0	1	0	852 Hz + 1477 Hz
*	0	0	1	1	697 Hz + 1633 Hz	*	1	0	1	1	852 Hz + 1633 Hz
*	0	1	0	0	770 Hz + 1209 Hz	*	1	1	0	0	941 Hz + 1209 Hz
*	0	1	0	1	770 Hz + 1336 Hz	*	1	1	0	1	941 Hz + 1336 Hz
*	0	1	1	0	770 Hz + 1477 Hz	*	1	1	1	0	941 Hz + 1477 Hz
*	0	1	1	1	770 Hz + 1633 Hz	*	1	1	1	1	941 Hz + 1633 Hz

*Unrelated

(b) B7 = 0 (Other tones)

Table-5-2

B 4	B3	B2	B1	B 0	Frequency	B4	B 3	B2	B1	B 0	Frequency
0	0	0	0	0	1k/1333 Hz, 16 Hz wamb.	1	0	0	0	0	2000 Hz Single tone
0	0	0	0	1	800/667 Hz, 16 Hz wamb.	1	0	0	0	1	2042 Hz Single tone
0	0	0	1	0	800/1k Hz,16 Hz wamb.	1	0	0	1	0	2514 Hz Single tone
0	0	0	1	1	500/667 Hz,16 Hz wamb.	1	0	0	1	1	500 Hz Single tone
0	0	1	0	0	500/400 Hz,16 Hz wamb.	1	0	1	0	0	667 Hz Single tone
0	0	1	0	1	800/1k Hz, 8 Hz wamb.	1	0	1	0	1	1333 Hz Single tone
0	0	1	1	0	500/400 Hz, 8 Hz wamb.	1	0	1	1	0	2100 Hz Single tone
0	0	1	1	1	400 Hz,16 Hz wamb.	1	0	1	1	1	_
0	1	0	0	0	400 Hz,20 Hz wamb.	1	1	0	0	0	_
0	1	0	0	1	400 Hz Single tone	1	1	0	0	1	_
0	1	0	1	0	425 Hz Single tone	1	1	0	1	0	_
0	1	0	1	1	440 Hz Single tone	1	1	0	1	1	
0	1	1	0	0	450 Hz Single tone	1	1	1	0	0	_
0	1	1	0	1	800 Hz Single tone	1	1	1	0	1	_
0	1	1	1	0	1000 Hz Single tone	1	1	1	1	0	_
0	1	1	1	1	1300 Hz Single tone	1	1	1	1	1	_

(6) CR5 (Not used)

	B7	B6	B5	B4	B3	B2	B1	B0
CR5	—	_	_	—	_	—	_	
Initial Value	0	0	0	0	0	0	0	0

B7 – B0..... Not used

(7) CR6 (VOX function control)

	B7	B6	B5	B4	B3	B2	B1	B0
CR6	VOX	ON	ON	OFF		RX NOISE	RX NOISE	RX NOISE
URD	ON/OFF	LVL1	LVL0	TIME	VOX IN	LEVEL SEL	LVL1	LVL0
Initial Value	0	0	0	0	0	0	0	0

B7 ... VOX function enable; 0/Disable, 1/Enable

B6, B5 ... Transmit signal energy detect (Transmit VOX) threshold (at 1000 Hz)

(0, 0): -30 dBm0

(0, 1): -35 dBm0

(1, 0): -40 dBm0

(1, 1): -45 dBm0

B4 ... Hang-over time (Fig.2, T_{VXOFF}); 0/160 ms, 1/320 ms

- B3 ... Receive VOX function setting; 0/Background noise transmit, 1/Voice signal detect When using this data for control, set pin VOXI at "0" level.
- B2 ... Background noise amplitude setting; 0/Automatic, 1/Programmable by B1 and B0 Automatic : Set the noise at the voice signal amplitude when B3

(or VOXI) changes from "1" to digital "0".

- B1, B0 ... (0, 0): No noise
 - (0, 1): -55 dBm0
 - (1, 0): -45 dBm0
 - (1, 1): -35 dBm0

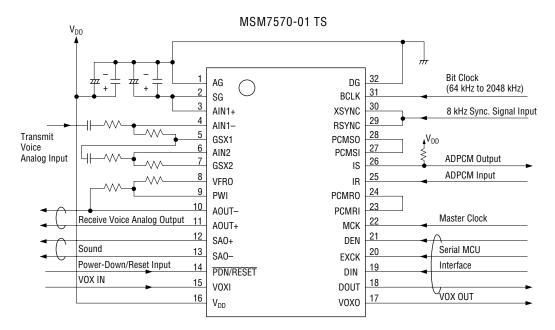
(8) CR7 (Detect register, read only)

	B7	B6	B5	B4	B3	B2	B1	B0
CR7	VOX	TX NOISE	TX NOISE	—		_	_	_
	OUT	LVL1	LVL0					
Initial Value	0	0	0	*	*	*	*	*

* For IC test

Note: These outputs are valid only when the VOX

function is enabled by CR6-B7.


B7 ... Transmit VOX function result; 0/Silence, 1/Voice

B6, B5 ... Transmit silence level (indicator);

(0, 0) : Below –60 dBm0

- (0, 1) : -50 to -60 dBm0
- (1, 0) : -40 to -50 dBm0
- (1, 1) : Above -40 dBm0
- B4 ... Not used
- B3 ... Not used
- B2 ... Not used
- B1 ... Not used
- B0 ... Not used

APPLICATION CIRCUIT

* Single-ended Analog Input Stage Type

PACKAGE DIMENSIONS

TSOP(1)32-P-0814-0.50-1K 0.25 TYP. SEATING PLANE 14.0 ± 0.2 12.4 ± 0.1 INDEX MARK Mirror finish (32 0 8.0±0.1 0.10 0.50 16 17 0.22 -0.08 0.8 ± 0.2 ⊕0.10⊛ .2 MAX. 0.17 ± 0.05 0~10° 0.95±0.05 0.05~0.25 0.25 13.0 0.5 ± 0.1 0.6 TYP. Package material Epoxy resin Lead frame material 42 alloy Pin treatment Solder plating ($\geq 5 \mu m$) 0.27 TYP. Oki Electric Industry Co., Ltd. Package weight (g) Rev. No./Last Revised 3/Dec. 10, 1996

Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage.

Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

(Unit : mm)

<u>NOTICE</u>

- 1. The information contained herein can change without notice owing to product and/or technical improvements. Before using the product, please make sure that the information being referred to is up-to-date.
- 2. The outline of action and examples for application circuits described herein have been chosen as an explanation for the standard action and performance of the product. When planning to use the product, please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.
- 3. When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.
- 4. Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified operating range.
- 5. Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of the product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.
- 6. The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury to humans. Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power control, medical equipment, and life-support systems.
- 7. Certain products in this document may need government approval before they can be exported to particular countries. The purchaser assumes the responsibility of determining the legality of export of these products and will take appropriate and necessary steps at their own expense for these.
- 8. No part of the contents contained herein may be reprinted or reproduced without our prior permission.

Copyright 2001 Oki Electric Industry Co., Ltd.