OKI Semiconductor

This version: Aug. 1998 Previous version: Nov. 1996

MSM6895/6896

admatec

Multi-Function PCM CODEC

GENERAL DESCRIPTION

The MSM6895/MSM6896, developed especially for low-power and multi-function applications in ISDN telephone terminals, are single +5 V power supply CODEC LSI devices. The devices consist of the analog speech paths directly connectable to a handset, the calling circuit directly connectable to a piezosounder, the push-button key scanning interface between push buttons and control processors, the dial tone generator, the B-channel interface, the CODEC, and the processor interface. The functions can be controlled via the 8-bit data bus.

FEATURES

• Single +5 V Power Supply

• Low Power Dissipation

Power ON Mode : 20 mW Typ. 53 mW Max. CODEC Power Down Mode : 10 mW Typ. 21 mW Max.

In compliance with ITU-T's companding law

 μ -law : MSM6895 A-law : MSM6896

Transmission clocks

Continuous CLK : 64, 128, 256 kHz

Burst CLK : 192, 384, 768, 1536, 2048 kHz

• Built-in PLL

Built-in Reference Voltage Supply

Ringing Tone
 Ringing Tone Combination
 Controlled by processor, 9 modes
 Controlled by processor, 6 modes

• Information Tone : Controlled by processor, 9 modes

• Built-in PB Tone Generator

• built-in Pb Tone Generator

• B-Channel Selectable

General Latch Output for Speech path Control
Watchdog Timer
500 ms

Key Scanning I/O

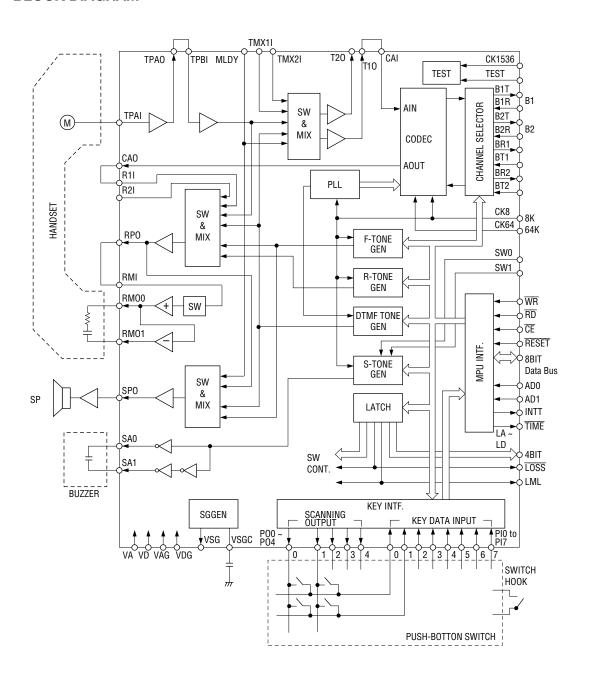
Output : 5 bits
Input : 8 bits

• Direct Connection to Handset

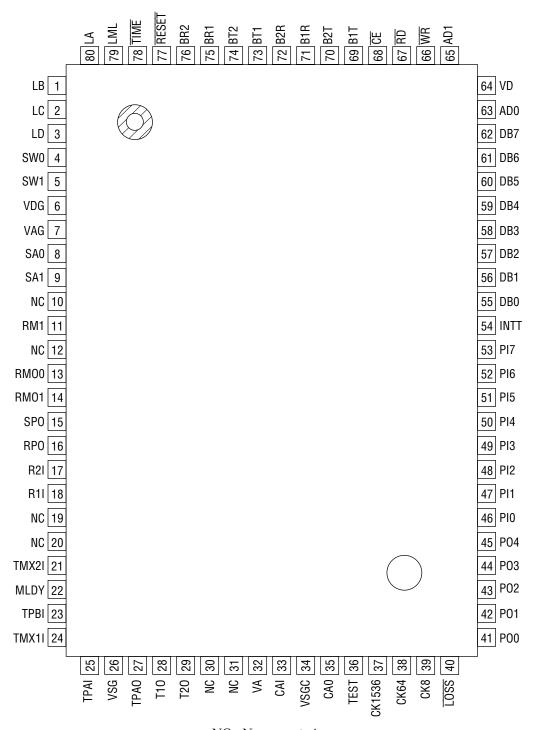
• Built-in Preamplifier for Loudspeaker

Handfree Interface

• Digital and Analog Interface for the phone-conference speech paths


Package:

80-pin plastic QFP (QFP80-P-1420-0.80-BK) (Product name : MSM6895GS-BK) (Product name : MSM6896GS-BK)



BLOCK DIAGRAM

PIN CONFIGURATION (TOP VIEW)

NC: No connect pin **80-Pin Plastic QFP**

PIN DESCRIPTION

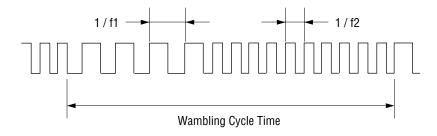
Pin	Symbol	Туре	Description	Pin	Symbol	Туре	Description
1	LB	DO	Data Latch Output B	31	_	_	NC
2	LC	D0	Data Latch Output C	32	VA	_	+5 V Analog Power Supply
3	LD	DO	Data Latch Output D	33	CAI	Al	Analog Signal Input to CODEC
4	SW0	DI	Sounder Tone Select (1)	34	VSGC	AO	Bypass Capacitor for Signal Ground
5	SW1	DI	Sounder Tone Select (2)	35	CAO	AO	Analog Signal Output from CODEC
6	VDG	_	Digital Ground	36	TEST	DI	Control Input for Test
7	VAG	_	Analog Ground	37	CK1536	DI	Clock Input for Test
8	SA0	DO	Sounder Output (+)	38	CK64	DI	Transmission Colck Input
9	SA1	DO	Sounder Output (-)	39	CK8	DI	Frame Synchronous Clock Input
10	_	_	NC	40	LOSS	DO	Howler Tone Control Signal
11	RMI	Al	Receive Main Amp Input	41	P00	DO	Key Scanning Signal Output (0)
12	_	_	NC	42	P01	DO	Key Scanning Signal Output (1)
13	RM00	AO	Receive MainAmp Output (+)	43	P02	DO	Key Scanning Signal Output (2)
14	RM01	AO	Receive MainAmp Output (-)	44	P03	DO	Key Scanning Signal Output (3)
15	SP0	AO	Speaker Pre-Amp Output	45	P04	DO	Key Scanning Signal Output (4)
16	RP0	AO	Receive Pre-Amp Output	46	PI0	DI	Key Scanned Data Input (0)
17	R2I	Al	Receive Addition Signal Input	47	PI1	DI	Key Scanned Data Input (1)
18	R1I	Al	Receive Signal Input	48	PI2	DI	Key Scanned Data Input (2)
19	_	_	NC	49	PI3	DI	Key Scanned Data Input (3)
20	_	_	NC	50	PI4	DI	Key Scanned Data Input (4)
21	TMX2I	Al	Transmit Addtion Signal Input (2)	51	PI5	DI	Key Scanned Data Input (5)
22	MLDY	Al	Hold Tone Input	52	PI6	DI	Key Scanned Data Input (6)
23	TPBI	Al	Transmit Pre-Amp (B) Input	53	PI7	DI	Key Scanned Data Input (7)
24	TMX1I	Al	Transmit Addtion Signal Input (1)	54	INTT	DO	Interrupt Output
25	TPAI	Al	Transmit Pre-Amp (A) Input	55	DB0	1/0	Data Bus (0)
26	VSG	AO	Signal Ground	56	DB1	1/0	Data Bus (1)
27	TPA0	A0	Transmit Pre-Amp (A) Output	57	DB2	1/0	Data Bus (2)
28	T10	A0	Transmit Signal Output (1)	58	DB3	1/0	Data Bus (3)
29	T20	A0	Transmit Signal Output (2)	59	DB4	I/O	Data Bus (4)
30	_	_	NC	60	DB5	1/0	Data Bus (5)

PIN DESCRIPTION (Continued)

Pin	Symbol	Туре	Description	Pin	Symbol	Туре	Description
61	DB6	1/0	Data Bus (6)	71	B1R	DI	B1 Channel Recive Input
62	DB7	1/0	Data Bus (7)	72	B2R	DI	B2 Channel Recive Input
63	AD0	DI	Address Data (0)	73	BT1	DI	B Channel Selector Transmit Data (1)
64	VD	_	+5 V Digital Power Supply	74	BT2	DI	B Channel Selector Transmit Data (2)
65	AD1	DI	Address Data Input (1)	75	BR1	D0	B Channel Selector Receive Data (1)
66	WR	DI	Write Signal Input	76	BR2	D0	B Channel Selector Receive Data (2)
67	RD	DI	Read Signal Input	77	RESET	DI	Reset Input
68	CE	DI	Chip Enable	78	TIME	D0	Timer Output
69	B1T	D0	B1 Channel Transmit Output	79	LML	D0	Hold Tone Control Output
70	B2T	D0	B2 Channel Transmit Output	80	LA	DO	Data Latch Output (A)

PIN AND FUNCTIONAL DESCRIPTIONS

LA, LB, LC, LD


General latch outputs for external control.

Statuses of these outputs are controlled via the processor interface. Refer to the description of the control data for details.

SW0, SW1

External control signal inputs for setting the tone combination of the ringing tone. When the external control for setting the tone combination is selected, the tone combination is set by these pins.

SW0	SW1		Wambling Cycle	f1	f2
0	0	Tone combination 1	16 Hz	1000 Hz	1333 Hz
0	1	Tone combination 2	16 Hz	800 Hz	1000 Hz
1	0	Tone combination 3	8 Hz	800 Hz	1000 Hz
1	1	Tone combination 1	16 Hz	1000 Hz	1333 Hz

VDG

Digital Ground.

VAG

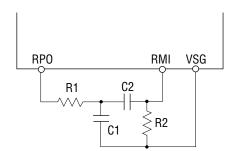
Analog Ground.

SA0, SA1

Sounder (ringing tone) driving outputs.

The output signal on SA1 is inverted against the signal on SA0. The sounder circuit can be easily configured by connecting a piezo-sounder between SA0 and SA1. Through processor control, the ringing tone volume is selectable from four levels and one of six tone combinations is selectable. Initially, the ringing tone volume is set at a maximum and the tone combination is set externally. If these pins are used with no-load, tone volume cannot be controlled.

When tone volume control is required, a load resistor must be connected between SA0 and SA1.


RMI, RMO0, RMO1

Receive main amplifier input and outputs.

RMI is the main amplifier input and RMO0 and RMO1 are the main amplifier outputs. The output signal on RMO1 is inverted against RMO0, so the earphone of a piezo electric-type handset is directly connected between RMO0 and RMO1. The RMI input pin is connected to the receive preamplifier output pin (RPO).

If the adjusting of receive path frequency characteristics is required, insert the following circuit for adjustment. During initial setting, the speech path from RMI to RMO0 and RMO1 is disconnected and the output of RMO0 and RMO1 is at the VSG level (VA/2). The speech path is provided by processor control.

A circuit example for adjustment of frequency characteristics

SPO

Output of preamplifier for speaker.

Since the driving capability is $2.4\,V_{PP}$ for the load of $20\,k\Omega$, SPO can not directly drive a speaker. During initial setting, SPO is in a non-signal state (VSG level), and a speech signal, RTONE0, RTONE1, FTONE, hold acknowledge tone, and PB signal acknowledge tone are output through processor control.

R1I, R2I, RPO

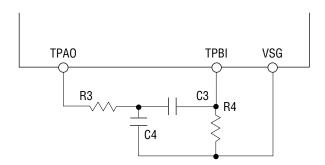
Receive preamplifier inputs and output.

R1I and R2I are for the inputs and RPO is for the output of the receive preamplifier. Normally, R1I is connected via an AC-coupling capacitor to the CODEC analog output (CAO), and R2I is used as the mixing signal input pin.

During initial setting, the RPO output is in non-signal state (VSG level), and speech signal, RTONE1, RTONE2, FTONE, PB acknowledge tone, and side tone signal are output through processor control. And if the three-party speech function is required, the R2I pin is connected to the analog output of the other CODEC.

MLDY

Hold tone signal input.


This pin is connected to the output of external melody IC. Through processor control, the signal applied to MLDYI is output from the TO output pin as a hold tone on the transmit path, and from the SPO output pin as a hold acknowledge tone on the receive path.

TPBI

Transmit signal input.

When the handset is used, TPBI is connected to the transmit preamplifier output pin (TPAO). If adjustment of frequency characteristics on the transmit path is required, insert a circuit for adjustment of characteristic between TPAO and TPBI. Through processor control, the signal applied to this pin is output via the T1O and T2O pins on the transmit path output and its side tone via the RPO pin.

A circuit example for adjustment of frequency characteristics

TMX1I, TMX2I

Transmit addition signal inputs.

Through processor control, the input signals to TMX1I and TMX2I are added to the transmit signal and are output to T1O and T2O respectively.

TPAI, TPAO

The transmit preamplifier input and output.

TPAI is the input and TPAO is the output. Connect TPAI to the microphone of handset via an AC-coupling capacitor if the DC offset appears at a transmit signal (offset from SGT). The transmit path from TPAI to TPAO is always established regardless of processor control.

VSG

Signal ground level output.

The output level is equal to a half of the power supply voltage.

VSGC

Bypass capacitor connecting pin for signal ground level. Insert a $0.1~\mu F$ capacitor with good higher frequency characteristic, between VSGC and VAG.

VA, VD

+5 V power supply.

VA is for an analog circuit and VD is for digital supply. Connect both VA and VD to the +5 V analog path of the system.

CAI

CODEC analog output. Connect CAI to T1O.

CAO

CODEC analog output.

Connect CAO to R1I via an AC-Coupling capacitor.

TEST, CK1536

External master clock inputs.

Since the MSM6895 and MSM6896 contain PLL internally, the external clock signal is eliminated. But the device can operate with the external clock through these pins.

When these pins are not used, leave these pins open or at 0 V.

Mode	TEST pin	CK1536 pin
Internal PLL	0 V	open or 0 V
External master clock	Digital "1"	Input the signal of 1536 kHz

When the external clock is used, the CK1536 signal is required to be synchronized in phase with the CK8 signal.

CK64

CODEC PCM data input and output shift clock input.

When the continuous clock is set, the frequency is one of 64 kHz, 128 kHz, and 256 kHz. When the burst clock is used, one of 192, 384, 768, 1536, and 2048 kHz is available. If the BCLOCK signal is not applied, PLL is out of synchronization and goes into the self-running mode.

CK8

Synchronous signal input.

CODEC PCM data is sent out sequencially from MSB at the rising edge of the CK64 signal in synchronization with the rise of the synchronous signal. PCM data should be entered from MSB in synchronization with the rise of the synchronous signal. PCM data is shifted in at the falling edge of the CK64 signal.

Since the CK8 signal is used for a trigger signal for PLL and for a clock signal to the tone generator, if this signal is not applied, not only any tone can not be output, but also PLL goes out of synchronization and goes into self-running mode. This signal has to be synchronous with the CK64 signal and its frequency must be within 8 kHz ± 50 ppm to ensure the CODEC AC characteristics (mainly frequency characteristics).

LOSS

Signal output for controlling the external circuits.

When the howler tone of sounder is selected through processor control, the output is in a digital "1".

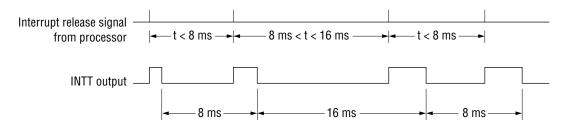
Initially, this output is set to a digital "0".

PO0, PO1, PO2, PO3, PO4, PO5, PO6, PO7

Key scanning outputs.

These output pins need external pull-up resistors because of their open-drain circuits. Through processor control, these outputs can be set open or to digital "0". Initially, these outputs are set at an opened state.

PI0, PI1, PI2, PI3, PI4, PI5, PI6, PI7


Key scanning inputs.

In the READ mode, data on PI0 to PI7 can be read out of the processor via data bus (DB0 to DB7).

INTT

Interrupt signal output to the processor.

INTT outputs interrupt signals (digital "0") at intervals of 8 ms by the interrupt release control signal from the processor. INTT does not output any signal while no CK8 signal is input.

DB0, DB1, DB2, DB3, DB4, DB5, DB6, DB7

Data bus inputs and outputs.

AD0, AD1

Address data inputs for the internal control registers.

Addressing of the internal control registers is executed by AD0 and AD1 and sub address data, DB7 and DB6.

	AD1	AD0	DB7	DB6	Function					
	0	0	0	0	Sounder Control					
	0	0	0	1	Control of function key acknowledge tone					
	0	0	1	0	B tone control					
	0	0	1	4	Control of the internal control latch and the general-purpose latch,					
	U	U	•	'	Reset control of the watch dog timer.					
	0	1	_	_	Control of channel selector					
	1	0		_	Key scanning output control, interrupt release control					
	1	1	0	0	Volume control and tone combination control of sounder					
	1	1	0	1	CODEC power down control					
	1	4	1	0	Level control of transmit path, PB tone, and Hold tone, Gain control of					
	'	'	•	0	receive path					
	1	1	1	1	Frequency control of howler tone					
Read	1	0	_	_	Read of the key scanning data					

WR

Write signal for internal control registers.

Data on the data bus is written into the registers at the rising edge of \overline{WR} under the condition of digital "0" of \overline{CE} (Chip Enable). While \overline{CE} is in digital "1" state, \overline{WR} becomes invalid. The Write cycle is a minimum of 2 μ s, but if the CK64 and CK8 signals are silent, the write cycle requires a minimum of 50 μ s.

A minimum of 2 µs specified as the write cycle is valid 10 ms after CK64 and CK8 signals are input.

\overline{RD}

Read signal input to read PI0 to PI7 out of the processor.

When $\overline{\text{CE}}$ and $\overline{\text{RD}}$ are in digital "0" state, the digital values on PI0 to PI7 are output onto the data buses DB0 to DB7. While $\overline{\text{CE}}$ is in digital "1" state, the $\overline{\text{RD}}$ signal becomes invalid.

CE

Chip Enable signal input.

When \overline{CE} is in digital "0" state, \overline{WR} and \overline{RD} are valid.

B1T, B2T, B1R, B2R

B channel interface inputs and outputs.

B1T and B2T are outputs, and B1R and B2R are inputs. Through channel control by the processor, various data paths are set. The CODEC input and output signals are input and output via these pins.

Initially the B1T and B2T outputs are fixed in a digital "1", and the B1R and B2R inputs are neglected.

BR1, BR2, BT1, BT2

External digital inputs and outputs to the B-channel.

BR1 and BR2 are outputs, and BT1 and BT2 are inputs. Through channel control by processor, the digital paths are set between these input and output pins and the B channel.

These signals are applied to another CODEC interface of three-party the speech path and to the interface of 64 kbps at the rate adaptor circuit.

Initially the BR1 and BR2 outputs are fixed in a digital "1", and the BT1 and BT2 inputs are neglected.

RESET

Reset signal input.

Digital "0" input to $\overline{\text{RESET}}$ makes all of internal control registers to be initialized. When powered on, this $\overline{\text{RESET}}$ signal should be input for initializing the system.

TIME

Watchdog timer output.

When the processor does not reset the timer, the 500 ms period (Digital "0": 4 ms) digital signal is continuously output. When $\overline{\text{RESET}}$ is at digital "0", this timer is reset. And, in about 500 ms after $\overline{\text{RESET}}$ goes to digital "1", the first timer output signal is issued and then the timer signal is output at intervals of a 500 ms. If the CK8 signal is not input, the $\overline{\text{TIME}}$ signal is not output.

LML

Control signal output for external hold tone generator.

LML goes to digital "1" state when the hold tone transmit mode on transmit path or the hold acknowledge tone mode on receive path is selected. During initialized state, LML is in digital "0" state.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage	V _{DD}	VAG, VDG = 0 V	0 to 7	V
Analog Input Voltage	V _{AIN}	VAG, VDG = 0 V	-0.3 to V _{DD} + 0.3	V
Digital Input Voltage	V _{DIN}	VAG, VDG = 0 V	-0.3 to V _{DD} + 0.3	V
Storage Temperature	T _{STG}	_	−55 to +150	°C

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Power Supply Voltage	V _D	VA, VD (Voltage must be fixed)	4.75	5.0	5.25	V
Operating Temperature	Та	_	-10	+25	+70	°C
Input High Voltage	V _{IH}	All Digital Input Pins	2.2		V_{DD}	V
Input Low Voltage	V _{IL}	All Digital Input Pins	0	_	0.8	V
Digital Input Rise Time	t _{lr}	All Digital Input Pins			50	ns
Digital Input Fall Time	t _{lf}	All Digital Input Pins	_	_	50	ns
Digital Output Load	R _{DL}	DOO to DO4 Output	10	_	_	kΩ
Digital Output Load	C _{DL}	POO to PO4 Output	_	_	100	pF

Recommended Operating Conditions (CODEC Digital Interface)

Parameter	Parameter Symbol Co		Min.	Тур.	Max.	Unit
				64		
Clock Frequency	Fc	CK64	_	128	_	kHz
				256		
Sync Pulse Frequency	F _S	CK8	_	8.0	_	kHz
Clock Duty Ratio	D _C	CK64	40	50	60	%
0 P.I. O.W. T.	t _{XS}	CK64→CK8 See Fig.1	_	_	100	ns
Sync Pulse Setting Time	t _{SX}	CK8→CK64 See Fig.1	_	_	100	ns
Sync Pulse Width	tws	_	1 CK64	_	100	μS
Data Setup Time	t _{DS}	B1R, B2R	100	_	_	ns
Data Hold Time	t _{DH}	B1R, B2R	100	_	_	ns
Allowable Jitter Width	_	CK8	_	_	500	ns

Recommended Operating Conditions (Processor Digital Interface)

Parameter	Symbol	ool Condition		Min.	Тур.	Max.	Unit
Write Pulse Period	Pw	WR		2000	_	_	ns
Write Pulse Width	T _W	WR		100	_	_	ns
Read Pulse Width	T _R	RD		200	_	_	ns
Address Data	t _{AW1}	AD0, AD1→WR		10	_	_	ns
Setup Time	t _{AR1}	AD0, AD1→RD		80	_	_	ns
Address Data	t _{AW2}	WR→AD0, AD1		50	_	_	ns
Hold Time	t _{AR2}	RD→AD0, AD1	C F:- 0	10	_	_	ns
OF Cotus Time	t _{CW1}	$\overline{CE} { ightarrow} \overline{WR}$	See Fig.2	10	_	_	ns
CE Setup Time	t _{CR1}	$\overline{CE} \rightarrow \overline{RD}$		80	_	_	ns
OF 11-14 Times	t _{CW2}	$\overline{WR} \rightarrow \overline{CE}$		50	_	_	ns
CE Hold Time	t _{CR2}	RD→CE		10	_	_	ns
Data Setup Time	t _{DW1}	DB0 to 7→WR		110	_	_	ns
Data Hold Time	t _{DW2}	WR→DB0 to 7		20	_	_	ns
Reset Pulse Width	t _{WRES}	RESET		100	_	_	ns

Recommend Operating Conditions (Analog Interface)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
		TPAI	_	_	0.24	
		ТРВІ			0.31	
		TMX1I, TMX2I			0.40	
		(Transmit Gain: Typ.)	_	_	2.40	
Analog Input Voltage	W	MLDYI			1.90	
Analog Input Voltage	V _{AIN}	(Transmit Gain: Typ.)	_	_	1.90	VPP
		R1I, R2I			1.20	
		(Transmit Gain: Typ.)	_	_		
		RMI	_	_	0.51	
		CAI	_	_	2.40	
		TPA0, T10, T20,	20		_	
Analog Load Resistance	R _{AL}	RPO, SPO, CAO	20	_		kΩ
		RM00, RM01	3	3 – –		
Analan Land Ornaritana	0	TPAO, T10, T20, RPO, SPO, CAO	_	_	100	pF
Analog Load Capacitance	C _{AL}	RM00, RM01	_		55	nF
		TPAI, TPBI, RMI	_10		+10	
Allowable Analog Input Offset Voltage		MLDYI, TMX1I, TMX2I				mV
	V _{off}		-50 —		+50	
		R1I, R2I	-25		+25	
		CAI	-100		+100	

ELECTRICAL CHARACTERISTICS

DC and Digital Interface Characteristics

 $(V_{DD} = 5 \text{ V } \pm 5\%, \text{ Ta} = -10^{\circ}\text{C to } +70^{\circ}\text{C})$

			(• 00 – 0 •	±0 /0, τα =	10 0 10 1	700)
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
	I _{DD1}	Operating Mode (No Signal, Sounder OFF)	_	3.9	10.0	mA
Dawar Cunnly Current	I _{DD2}	CODEC Receive Power Down	_	3.3	8.0	mA
Power Supply Current	I _{DD3}	CODEC Transmit Power Down	_	2.8	7.0	mA
	I _{DD4}	CODEC Transmit/Receive Power Down	_	2.2	4.0	mA
Input High Voltage	V _{IH}	_	2.2	_	V_{DD}	V
Input Low Voltage	V _{IL}	_	0.0	_	0.8	V
High Input Leakage Current	I _{IH}	_	_	_	2.0	μА
Low Input Leakage Current	I _{IL}	_		_	0.5	μА
Digital Output High		I _{OH} = 0.4 mA	2.4	_	V_{DD}	.,
Voltage	V _{OH}	I _{OH} = 1 μA	3.8	_	V_{DD}	V
Digital Output Low Voltage	V _{OL}	I _{OL} = −1.6 mA	0.0	_	0.4	V
Digital Output Leakage Current	I ₀	_	-	_	10	μА
Analog Output Offset Voltage	V _{off}	TPAO, T10, T20, CAO, RPO, RMO1, RMO2, SPO	-100	_	+100	mV
Input Capacitance	C _{IN}	_	_	5	_	pF
		TPAI, TPBI, MLDYI, RMI	_	10	_	MΩ
Analog Input Resistance	R _{IN}	TMX1I, TMX2I, R1I, R2I	10	_	_	kΩ
		CAI (fin : < 4 kHz)	_	1	_	MΩ
VSG Voltage	_	_	VA/2 -0.05	VA/2	VA/2 +0.05	V
VSG Drive Current	I _{SGF}	FORCE Current	1.0	1.5	_	m A
VOG DIIVE GUITEIIL	I _{SGS}	SINK Current	0.3	0.5	_	mA

AC Characteristics 1 (CODEC)

 $(V_{DD} = 5 \text{ V } \pm 5\%, \text{ Ta} = -10^{\circ}\text{C to } +70^{\circ}\text{C})$

		1			(0 0 0 - 0 0	±0 /0, τα =	10 0 10	170 0)
Parameter	Symbol	Freq. (Hz)	Level (dBm0)	Condition	Min.	Тур.	Max.	Unit
	Loss T1	60			20	27	_	
	Loss T2	300			-0.15	+0.07	+0.20	1
Transmit Frequency	Loss T3	1020	1			Reference		1
Response	Loss T4	2020	0		-0.15	-0.03	+0.20	dB
	Loss T5	3000			-0.15	+0.06	+0.20	1
	Loss T6	3400			0.0	0.38	0.80	1
	Loss R1	300			-0.15	-0.03	+0.20	
Receive Frequency Response	Loss R2	1020				Reference		1
	Loss R3	2020	0		-0.15	-0.02	+0.20	dB
Пеэропэе	Loss R4	3000			-0.15	+0.15	+0.20	1
	Loss R5	3400	1		0.0	0.56	0.80	1
	SD T1		3		35	43.0	_	
Transmit Signal to Distortion Ratio	SD T2	1	0		35	41.0	_	1
	SD T3	1020	-30	*1	35	38.0	_	dB
	SD T4		-40	*2	29 28	31.0	_	
	SD T5		-45	*2	24 23	26.5	_	
	SD R1		3		37	43.0	_	
D . O	SD R2	1	0		37	41.0	_	1
Receive Signal to	SD R3	1020	-30	*1	37	40.0	_	dB
Distortion Ratio	SD R4		-40	*2	31 30	34.0	_	
	SD R5		-45	*2	26 25	31.0	_	
	GT T1		3		-0.3	+0.01	+0.3	
	GT T2]	-10			Reference		1
Transmit Gain	GT T3	1020	-40		-0.3	+0.13	+0.3	dB
Tracking	GT T4]	-50		-0.6	+0.32	+0.6	-
	GT T5		-55		-1.5	+0.64	+1.5	
	GT R1		3		-0.2	0.0	+0.2	
	GT R2	1	-10			Reference		1
Receive Gain	GT R3	1020	-40		-0.2	-0.06	+0.2	dB
Tracking	GT R4]	-50		-0.4	-0.20	+0.4	
	GT R5		-55		-0.8	-0.27	+0.8	

Notes: *1

^{*1} Psophometric filter is used

^{*2} Upper is specified for the MSM6895, lower for the MSM6896

AC Characteristics 1 (CODEC) (Continued)

 $(V_{DD} = 5 \text{ V } \pm 5\%, \text{ Ta} = -10^{\circ}\text{C to } +70^{\circ}\text{C})$

						1 00	· · · · · · · · · · · · · · · · · · ·		
Parameter	Symbol	Freq. (Hz)	Level (dBm0)	Condit	ion	Min.	Тур.	Max.	Unit
				AIN = SG			-73.5	-70	
	Nidle T	_	_	*1	*2	_	-71	-69	
Idle Channel Noise	Nidle R	_	_	*1 *3		_	-77.8	-74	dBmOp
	AV T	4000	_	Transmit C	ODEC	0.5671	0.6007	0.6363	\/
Absolute Amplitude	AV R	1020	0	Receive C	ODEC	0.5671	0.6007	0.6363	Vrms
Absolute Delay Time	Td	1020	0	A to A		_	0.58	0.60	ms
	tgd T1	500				_	0.19	0.75	
	tgd T2	600				_	0.12	0.35	
Transmit Group Delay	tgd T3	1000	0	*4		_	0.02	0.125	ms
, ,	tgd T4	2600					0.05	0.125	
	tgd T5	2800				_	0.08	0.75	
	tgd R1	500				_	0.0	0.75	
	tgd R2	600				_	0.0	0.35	
Receive Group Delay	tgd R3	1000	0	*4		_	0.0	0.125	ms
	tgd R4	2600				_	0.09	0.125	
	tgd R5	2800					0.12	0.75	
	CR T	4000	0	Transmit →	Receive	66	86	_	40
Crosstalk Attenuation	CR R	1020	0	Receive → 1	ransmit	70	78	_	dB
Discrimination	DIS	4.6 kHz to 72 kHz	-25	0 to 400	00 Hz	30	32.0	_	dB
Out-of-band Signal Spurious	S	300 to 3400	0	4.6 kHz to 1	I00 kHz	_	-37.5	-35	dBm0
Intermodulation Distortion	IMD	fa = 470 fb = 320	-4	2fa-	fb	_	-52	-35	dBm0
Power Supply Noise Rejection Ratio	PSR T PSR R	0 to 50 kHz	100 mV _{pp}	*5		_	30	_	dB

Notes:

- *1 Psophometric filter is used
- *2 Upper is specified for the MSM6895, lower for the MSM6896
- *3 PCM data for MSM6895: All "1" PCM data for MSM6896: "11010101"
- *4 Minimum value of the group delay distortion
- *5 The measurement under idle channel noise

AC Characteristics 2 (Transmit Path)

 $(V_{DD} = 5 \text{ V } \pm 5\%, \text{ Ta} = -10^{\circ}\text{C to } +70^{\circ}\text{C})$

					י – טטיי)	7 1 20 /0	, .u		
Parameter	Symbol	Freq. (Hz)	Level (dBV)	Conditi	ion	Min.	Тур.	Max.	Unit
Pre-Amp Gain	GTPA	1020	-24.4	TPAI-TPA0)	18.0	20.0	22.0	dB
Transmit Path 1 Gain	GTPB1	1000	00.1	TPBI-T10		15.7	17.7	19.7	dB
Transmit Path 2 Gain	GTPB2	1020	-22.1	TPBI-T20		15.7	17.7	19.7	dB
Transmit Addition Signal 1 Gain	GTMX1	1020	-4.4	TMX1I-T10)	-2.0	0.0	+2.0	dB
Transmit Addition Signal 2 Gain	GTMX2	1020	<u>-4.4</u>	TMX1I-T20)	-2.0	0.0	+2.0	dB
In-Channel PB Signal Output Level	VPBT1	_	_	T10 Set a typic	ıt al gain	-17.4	-15.4	-13.4	dBV
	VPBT2	_	_	T20 Set a	it al gain	-17.4	-15.4	-13.4	dBV
In-Channel PB Signal Output	GPBT1		_	For -	– 3 dB	-5.0	-3.0	-1.0	dB
Level Setting	GPBT2				– 6 dB	-8.0	-6.0	-4.0	dB
In-Channel PB Signal Frequency Deviation	DfPBT	_	_	T10, T20		-0.9	_	+0.9	%
In-Channel PB Signal Distortion	THDPBT	_	_	In-Band Dist	tortion	_	-35	-30	dB
Hold Tone Path Gain	GPAT1	1020	-22.4		Set at typical	-4.0	-2.0	0.0	dB
Tiola Tolle Fath daill	GPAT2	1020	-22.4		gain	-4.0	-2.0	0.0	ub
Hold Tone Path Gain Setting	RG1 PAT	1020	-22.4	For -	−3 dB	-5.0	-3.0	-1.0	dB
noid Tolle Paul Gaill Setting	RG2 PAT	1020	-ZZ.4		−6 dB	-8.0	-6.0	-4.0	dB
Idla Channal Naiga	Ni TPA	_	_	TPAI: 510 Ω at te		_	-93	_	dBV
Idle Channel Noise	Ni TPB	_	_	T10, T20	*6	_	-91	_	dBV
Maximum Output Voltage Swing	VOT	_	_	TPAO, T10 T20, R _L = 2		2.4	_	_	V _{PP}

Note: *6 Noise band width: 0.3 kHz to 3.4 kHz, non-weighted

AC Characteristics 3 (Receive Path)

 $(V_{DD} = 5 \text{ V } \pm 5\%, \text{ Ta} = -10^{\circ}\text{C to } +70^{\circ}\text{C})$

					`		i e		
Parameter	Symbol	Freq. (Hz)	Level (dBV)	Condi	tion	Min.	Тур.	Max.	Unit
Descine Main Amer Ocio	GRM00	4000	-19.4	RMI-RM0	00	13.2	15.3	17.3	dB
Receive Main Amp. Gain	GRM01	1020	-19.4	RMI-RMO)1	13.2	15.3	17.3	dB
Receive Main Amp. Output Gain Difference	DGRMO	1020	-19.4	RM00/RM	/IO1	_	-0.01	_	dB
Receive Main Amp. Output Phase Difference	DPRMO	1020	-19.4	RM00/RM	/IO1	_	-179.6	_	deg
Receive Signal Path Gain	GRPA	1020	-14.4	R1I-RP0	Set at typical	-8.0	-6.0	-4.0	dB
	RG RPA1			For -	+3 dB	1.0	3.0	5.0	
Receive Signal Path Gain Setting	RG RPA2	1020	-23.4	typical -	+6 dB	4.0	6.0	8.0	dB
	RG RPA3			setting -	+9 dB	7.0	9.0	11.0	
Receive Addition Signal Path Gain	GRPB	1020	-14.4	R2I-RP0	Set at typical	-8.0	-6.0	-4.0	dB
Descine Addition Cinnel Deth	RG RPB1			For -	+3 dB	1.0	3.0	5.0	
Receive Addition Signal Path	RG RPB2	1020	-14.4	typical -	+6 dB	4.0	6.0	8.0	dB
Gain Setting	RG RPB3			setting -	+9 dB	7.0	9.0	11.0	
Speaker Preamp. Gain	GSP	1020	-4.4	R1I-SP0 Set at typical		-8.0	-6.0	-4.0	dB
ореакет гтеаптр. Фапт	GOF	1020	-4.4	R2I-SP0	Set at typical	-8.0	-6.0	-4.0	ub
Hold Acknowledge Tone Path Gain	GPAS	1020	-7.4	MLDYI-SF	P0	-5.0	-3.0	-1.0	dB
PB Acknowledge Tone Output Level	VPBRP			RP0		-32.1	-30.1	-28.1	dBV
	VPBRP			SP0		-30.2	-28.2	-26.2	dBV
PB Acknowledge Tone Frequency Difference	DfPBR	_	_	RPO, SPO)	-0.9	_	+0.9	%
PB Acknowledge Tone Distortion	THD PBR	_	_	RPO, SPO)	_	-35	-30	dB
Side Tone Path Gain	GSIDE	1020	-21.4	TPBI-RP0)	8.9	10.9	12.9	dB
	Ni RPO			RP0	*6	_	-86	_	dBV
Idla Channal Maica	Ni SPO			SP0	*6	_	-86	_	dBV
Idle Channel Noise	Ni RMO	_	_	RMI, VSG RM00, RM0		_	-95	_	dBV

Note: *6 Noise band width: 0.3 kHz to 3.4 kHz, non-weighted

AC Characteristics 3 (Receive Path) (Continued)

 $(V_{DD} = 5 \text{ V } \pm 5\%, \text{ Ta} = -10^{\circ}\text{C to } +70^{\circ}\text{C})$

					(00				
Parameter		Symbol	Freq. (Hz)	Level (dBV)	Condition	Min.	Тур.	Max.	Unit
		VOR			RPO, SPO	2.4			\/
Mayimum Output Amplituda		VUN	_		$R_L = 20 \text{ k}\Omega$	2.4			V _{PP}
Maximum Output Amplitude		VOM			RM00, RM01	3.0			\/
		VOIVI	_	_	$R_L = 3 k\Omega + 55 nF$	3.0		_	V _{PP}
RTONEO Output Amplitude	*7	VRT0	_	_	RP0	77.2	91.7	109.0	mV_{PP}
RTONE1 Output Amplitude	*8	VRT1	_	_	RP0	132.0	157.0	187.0	mV_{PP}
ETONE Output Amplitude	U	VFTRP			RP0	135.5	161.0	0 191.5	m\/
FTONE Output Amplitude		VFTSP	<u> </u>	_	SP0	159.0	189.0	224.6	mV _{PP}

Notes: *7 DT, PDT, SDT, CRBT, IIT

*8 RBT, DT, T250

AC Characteristics 4 (Ringing Tone Output Circuit)

 $(V_{DD} = 5 \text{ V } \pm 5\%, \text{ Ta} = -10^{\circ}\text{C to } +70^{\circ}\text{C})$

					(00				
Parameter	Symbol	Freq. (Hz)	Level (dBV)	Cor	ndition	Min.	Тур.	Max.	Unit
	VST1			SA0-	Volume 1	3.25	4.0	_	
Calling Tana Output Amplitude *0	VST2			SA1	Volume 2	0.73	1.28	1.98	W
Calling Tone Output Amplitude *9	VST3	_	_	730 Ω	Volume 3	0.25	0.47	0.65	V_{PP}
	VST4			to	Volume 4	0.13	0.28	0.45	
Howler Tone Output Amplitude	VHOW	_	_	VDG		3.25	4.0	_	V_{PP}

Note: *9. IR-1, IR-2, SIR-1, SIR-2, CR, T1K, HR, SPT

Digital Interface Characteristics

 $(V_{DD} = 5 \text{ V } \pm 5\%, \text{ Ta} = -10^{\circ}\text{C to } +70^{\circ}\text{C})$

		(55	, ,						
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit			
Digital Output (Latch) Delay Time	t _{PDLA}	$\overline{WR} \rightarrow LA$, LB, LC, LD, LML, \overline{LOSS}	0.5	_	1.9	μs			
key Coopping Output Delay Time		WR→P00, P01, P02, P03, P04	0.5		1.9				
key Scanning Output Delay Time	t _{PDSCN}	Pull-up resistor : 10 k Ω	0.5		1.9	μS			
Digital Output (Data) Delay Time	t _{PDDATA}	RD→DB0 to DB7	20	52	150	ns			
Digital Dath Dalay Time		BT1→BR1, BR2	20	E0.	150				
Digital Path Delay Time	^T PDPATH	BT2→BR1, BR2	20	52	150	ns			
CODEC Data Output Delay Time	t _{PDCOD}	CK64→B1T, B2T	20	50	100	ns			

TIMING DIAGRAM

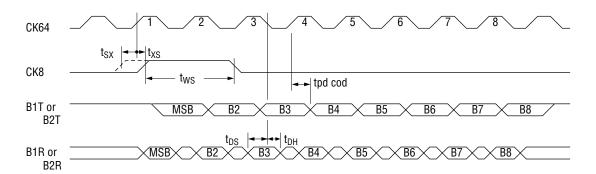


Figure 1 CODEC Timing

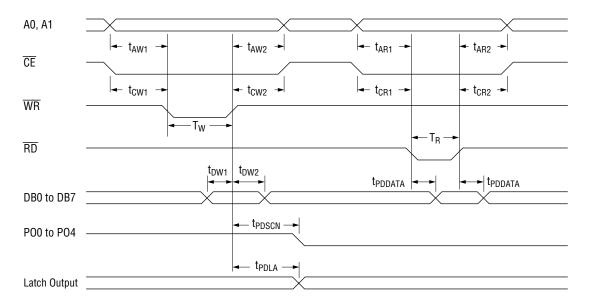


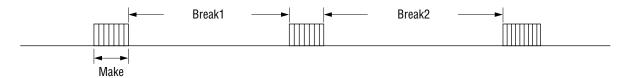
Figure 2 Processor Interface Timing

FUNCTIONAL DESCRIPTION

Control Data Description Sounder control

WRITE Mode

			Contro	ol Data				O	Frequency	Mak	e/Break Timii	ng *6	D
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Output Tone	(Hz)	Make (Sec)	Break1 (Sec)	Break2 (Sec)	Remarks
0	0	1	PDC	0	0	0	0	SPT	1	0.125	0.125	∞	Tone Output:
			*1	0	0	0	1	IR-1	Wamble Tone	1	2	_	SA0, SA1
				0	0	1	0	IR-2	Wamble Tone	0.5	0.5	_	
				0	0	1	1	SIR-1	Wamble Tone	0.25	0.25	2.25	
				0	1	0	0	CR	Wamble Tone	Continuous			
				0	1	0	1	HOW	800 or	Continuous			
								*2	Wamble Tone				
				0	1	1	0	SIR-2	Wamble Tone	0.5	1	_	
				0	1	1	1	T1K	1	0.25	0.25	_	
				1	0	0	0	HR	1	0.125	0.125	_	
				1	0	0	0	DT	400	Continuous			
				1	0	1	0	SDT	400	0.125	0.125		Tone Output:
				1	0	1	1	RBT	400/16	1	2	_	RPO, Refer to Table 2
				1	1	0	0	BT	400	0.5	0.5	_	and 4.
				1	1	0	1	PDT	400	0.25	0.25	_	
				1	1	1	0	CRBT	400/16	0.5	∞	_	
		0		Χ	Χ	Χ	Х		Susp	ends the tones a	above.		


- *1. PDC: This bit is used for the CODEC power-down control. For making this bit valid, "0"s must be written to the control data bits described in the later section.
 - PDC = 1: CODEC is in power-down mode. PDC = 0: CODEC is in operation mode.
- *2. When the HOW is indicated, the \overline{LOSS} output is "1". Otherwise it is "0".
- *3. In the above specification, the data contents written later are valid. The signal of sounder path (SA0, SA1) and the signal of receive path (RPO) can not be output simultaneously.

Control of function key acknowledge tone

WRITE Mode

			Contro	ol Data				Output Tono	Frequency	Mak	e/Break Timi	ng *6	Domonico
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Output Tone	(Hz)	Make (Sec)	Break1 (Sec)	Break2 (Sec)	Remarks
0	1	1	Χ	Χ	0	0	1	IIT	400	0.25	0.25	2.25	Tone output:
			Χ	Χ	0	1	0	T250	250	Continuous			RPO, SPO
			NTTC	Χ	0	1	1	FTONE (1)	1 k	Continuous			
			*4	Χ	1	0	0	FTONE (2)	1 k	0.1	∞	_	
		0	0	0	0	0	0		Suspe	nds the all abov	e tones		
		0	0	0	0	0	1						
					0	1	0						
					0	1	1		Sı	spends the FTC	NE		

- *4. NTTC = 1 when the initial state is set. NTTC can be set as PBTC when the PB tone is set, but the data written into NTTC in later is valid. When NTTC = 1, the FTONE (1) and FTONE (2) signals are output from SPO. When NTTC = 0, these signals are output from RPO. NTTC = 1 when FTONE and PB tone is stopped.
- *5. When two or more signals are specified out of IIT, T250 and FTONE, the output signals are compounded by two or three tones.
- *6. The definition of Make/Break Timing is as follows;

PB tone control

WRITE Mode

			Contro	ol Data				Outp	ut PB Freq	uency	Domonico
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	РВ	Low	High	Remarks
1	0	1	PBTC	0	0	0	0	1	697 Hz	1209 Hz	When PBTC = 0, the PB tone is output from the transmit path and the
				0	0	0	1	2	697 Hz	1336 Hz	receive path RPO.
				0	0	1	0	3	697 Hz	1477 Hz	The conditions of internal control signals are MUTN = 0 and NTTC = 0 .
				0	0	1	1	Α	697 Hz	1633 Hz	
				0	1	0	0	4	770 Hz	1209 Hz	When PBTC = 1, the PB tone is output only from the receive path
				0	1	0	1	5	770 Hz	1336 Hz	SPO.
				0	1	1	0	6	770 Hz	1477 Hz	The PB signal is not output from the transmit path.
				0	1	1	1	В	770 Hz	1633 Hz	The conditions of internal control signals are MUTN = 1 and NTTC = 1.
				1	0	0	0	7	852 Hz	1209 Hz	
				1	0	0	1	8	852 Hz	1336 Hz	When the initial state is set and the PB tone is suspended,
				1	0	1	0	9	852 Hz	1477 Hz	the conditions of internal control signals are MUTN = 1 and NTTC = 1.
				1	0	1	1	С	852 Hz	1633 Hz	
				1	1	0	0	*	941 Hz	1209 Hz	
				1	1	0	1	0	941 Hz	1336 Hz	
				1	1	1	0	#	941 Hz	1477 Hz	
				1	1	1	1	D	941 Hz	1633 Hz	
		0	0	Х	Х	Х	X	Susp	ends the PE	3 tone	

Latch control and timer reset

WRITE Mode

			Contro	ol data				Latab autout	Domonico
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Latch output	Remarks
1	1	1	0	0	0	0	1	LT1 = 1	These latch are for internal control and used for control of speech path.
				0	0	1	0	LML1 = 1	Initially all latch are set to "0". For details of speech path control, refer to Table 1 to 4.
				0	0	1	1	LMX1 = 1	Each latch can be specified independently.
				0	1	0	1	LT2 = 1	
				0	1	1	0	LML2 = 1	The output at the LML pin is in "1" when either LML1, LML2, or LMR is in "1".
				0	1	1	1	LMX2 = 1	
				1	0	0	0	LR = 1	
				1	0	0	1	LS = 1	
				1	0	1	0	LMN = 1	
				1	0	1	1	LMR = 1	
				1	1	0	0	LA = 1	These general latches are for external control. LA, LB, LC, and LD correspond to
				1	1	0	1	LB = 1	the external pin symbols and are set independently. Initially, all latches are set to "0".
				1	1	1	0	LC = 1	
				1	1	1	1	LD = 1	
		0	0	Latch	codes de	escribed	above		Sets the corresponding latches listed above to "0".
		0	0	0	0	0	0	_	Sets all latches listed above to "0".
1	1	1	1	0	0	0	0		Resets the watch dog timer.

Table 1. Transmit speech path setting list

Otatora Orașili al			(Control	Symb	ol			()		
Status Symbol	LML1	LT1	LMX1	LML2	LT2	LMX2	LMN	MUTN	SG	Т	TMX1	PBt	Ht	SG	Т	TMX2	PBt	Ht
TA-1	0	0	Х	_	_	_	Х	Х	1	_	_	_	_	_	_	_		_
TA-2	0	1	0	_	_	_	0	1	_	1	_	_	_	_	_	_	_	_
TA-3	0	1	0	_	_	_	1	1	1	_	_	_	_	_	_	_		_
TA-4	0	1	1	_	_	_	0	1	_	1	1	_	_	_	_	<u> </u>		_
TA-5	0	1	1	_	_	_	1	1	_	_	1	_	_	_	_	_		_
TA-6	0	1	Х	_	_	_	Х	0	_	_	_	1	_	_	_	_		_
TA-7	1	Χ	Х	_	_	_	Х	Х	_	_	_	_	1	_	_	_	_	_
TB-1	_		_	0	0	Х	Χ	Х	_	_	_	_	_	1	_	_		_
TB-2	_	_	_	0	1	0	0	1	_	_	_	_	_	_	1	_		_
TB-3	_		_	0	1	0	1	1	_	_	_	_	_	1	_	_		_
TB-4	_	_	_	0	1	1	0	1	_	_	_	_	_	_	1	1		_
TB-5	_		_	0	1	1	1	1	_	_	_	_	_	_	_	1	_	_
TB-6	_		_	0	1	Х	Х	0	_	_	_	_	_	_	_	_	1	_
TB-7	_		_	1	Χ	Х	Х	Х	_	_	_	_	_	_	_	_		1

- Notes: 1. MUTN of Control Signal is set by PBTC (DB4). MUTN = 1 when the initial state is set. MUTN = 0 when PBTC = 0. MUTN = 1 when PBTC = 1.
 - 2. SG: Signal ground, T: Transmit signal, TMX1: Transmit addition signal 1, TMX2: Transmit addition signal 2, PBt: PB signal, Ht: Hold tone signal
 - 3. The output signals of T1O and T2O are the signals added by the signals indicated in "1"s in each column.

Table 2. Receive speech path setting list (RPO output)

Ctatus Combal			Contro	l Signa	ıl			(Output	Signal	at RPC)	
Status Symbol	LS	LT1	LT2	LMN	MUTN	NTTC	R1	R2	Ts	RT0	RT1	FT	PBr
RP-1	0	0	0	Х	Х	0/1	_	_	_	1	1	1/0	1/0
RP-2	0	1	0	0	1	0/1	1	_	1	1	1	1/0	1/0
RP-3	0	1	0	0	0	0/1	1	_	_	1	1	1/0	1/0
RP-4	0	1	0	1	Х	0/1	1	_	_	1	1	1/0	1/0
RP-5	0	0	1	0	1	0/1	_	1	1	1	1	1/0	1/0
RP-6	0	0	1	0	0	0/1	_	1	_	1	1	1/0	1/0
RP-7	0	0	1	1	Х	0/1	_	1	_	1	1	1/0	1/0
RP-8	0	1	1	0	1	0/1	1	1	1	1	1	1/0	1/0
RP-9	0	1	1	0	0	0/1	1	1	_	1	1	1/0	1/0
RP-10	0	1	1	1	Х	0/1	1	1	_	1	1	1/0	1/0
RP-11	1	0	0	Х	Х	Χ	_	_	_	1	1		_
RP-12	1	1	0	Х	Х	Χ	1	_	_	1	1		
RP-13	1	0	1	Х	Х	Χ	_	1	_	1	1	_	_
RP-14	1	1	1	Х	Х	Χ	1	1	_	1	1	_	_

Table 3. Control of receive main amplifier

Control Signal	Output signal of
LR	RMO0 and RMO1
0	SG
1	Input signal to RMI

Notes:

- 4. R1: Receive signal 1, R2: Receive signal 2, Ts: Side tone signal, RT0: DT, PDT, SDT, CRBT, and IIT, RT1: RBT, BT, and T250, FT: FTONE and PBr: PB acknowledge signal.
- 5. Output Signal RPO is the signal added by the signal indicated in "1"s in each column.
- 6. "0"s of Control Signal NTTC are equivalent to "1"s of the Output Signals FT and PBr, and "1"s are equivalent to "0"s of Output Signals.
- 7. Control Signals MUTN and NTTC are the internal control signals. Initially, both signals are in "1"s. MUTN is controlled by PBTC of controlling the PB tone.

MUTN = 0 when PBTC = 0. MUTN = 1 when PBTC = 1.

NTTC is controlled by PBTC of controlling the PB tone or NTTC of controlling the function key acknowledge tone, but the NTTC data written later is valid.

NTTC = 0 when PBTC = 0. NTTC = 1 when PBTC = 1.

Table 4. Receive speech path setting list (SPO)

Status Symbol		Cor	trol Si	gnal				Out	put Sig	nal at	SPO		
Status Symbol	LS	LMR	LT1	LT2	NTTC	SG	R1	R2	RT0	RT1	FT	PBr	Hr
RS-1	0	0	Х	Х	0	1	_	_	_	_	_	_	_
RS-2	0	0	Х	Х	1	_	_	_	_	_	1	1	_
RS-3	0	1	Χ	Х	0/1	_	_	_	_	_	0/1	0/1	1
RS-4	1	0	0	0	Χ	_	_	_	1	1	1	1	_
RS-5	1	0	1	0	Х	_	1	_	1	1	1	1	_
RS-6	1	0	0	1	Х	_	_	1	1	1	1	1	_
RS-7	1	0	1	1	Х	_	1	1	1	1	1	1	_
RS-8	1	1	0	0	Χ	_	_	_	1	1	1	1	1
RS-9	1	1	1	0	Χ	_	1	_	1	1	1	1	1
RS-10	1	1	0	1	Х	_	_	1	1	1	1	1	1
RS-11	1	1	1	1	Х	_	1	1	1	1	1	1	1

- Notes: 8. SG: Signal ground, R1: Receive signal 1, R2: Receive signal 2, Hr: Hold acknowledge tone, PBr: PB acknowledge tone, FT: FTONE, RT0: DT, PDT, SDT, CRBT, and IIT and RT1: RBT, BT, and T250.
 - 9. An Output Signal at SPO is the signal added by the signal indicated in "1"s in each column.
 - 10. The Control Signal NTTC is defined equally to Notes: 7.

Channel selector control

WRITE Mode

			Contro	ol Data				Status	Main Co	nnastion Status	Remarks
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Symbol	Main Connection Status		Hemarks
0	0	0	0	0	0	0	0	A1	B1T←"1"	B1R \rightarrow No connection	Different groups (A, B, C, and D) are set
					0	0	1	A2	B1T←DOUT	B1R→DIN	independently.
					0	1	0	A3	B1T←BT1	B1R→BR1	
					0	1	1	A4	B1T←BT2	B1R→BR2	For setting the same group, the data written later is
					1	0	0	B1	B2T←"1"	B2R \rightarrow No connection	valid.
					1	0	1	B2	B2T←DOUT	B2R→DIN	
					1	1	0	В3	B2T←BT1	B2R→BR1	Refer to Table 5 and 6 for details.
					1	1	1	B4	B2T←BT2	B2R→BR2	The initial statuses are A1 and B2.
				1	Χ	Χ	Χ	С	B1T←B2R	B2T←B1R	
Χ	Χ	Χ	1	Χ	Χ	Χ	Χ	D1	B1T←B1R		
X	Χ	1	Χ	Χ	Х	Χ	Χ	D2	B2T←B2R		
Χ	1	Χ	Χ	Χ	Χ	Χ	Х	D3	BT1→BR1		
1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	D4	BT2→BR2		

Table 5. Output	pin connection	status by	channel	selector	control

Status	Outp	ut Pin	Conne	ction S	tatus	Remarks
Symbol	BIT	B2T	DIN	BR1	BR2	Remarks
A1	1	_	*1	*1	*1	Initial Setting
A2	DOUT	_	B1R	*1	*1	
А3	BT1	_	*1	B1R	*1	
A4	BT2	_	*1	*1	B1R	
B1	_	1	*1	*1	*1	Initial Setting
B2	_	DOUT	B2R	*1	*1	
В3	_	BT1	*1	B2R	*1	
B4	_	BT2	*1	*1	B2R	
С	B2R	B1R	_		_	
D1	B1R	*3	_	*4	*4	
D2	*2	B2R	_	*4	*4	
D3	*2	*3	_	BT1	*4	
D4	*2	*3	_	*4	BT2	

Notes: 11. *1. According to the combination of A and B (Table 6).

*2. One of statuses A1 to A4 is held.

*3. One of statuses B1 to B4 is held.

*4. One of statuses A1 to A4 or one of statuses B1 to B4, whichever is written later, is held.

When the setting of C is performed before the setting of D group, the setting of D must be performed after the setting of the group A and B.

- 12. The statuses of the pins indicated by "—" is not affected.
- 13. DIN is connected to the digital input of CODEC and DOUT is connected to the digital output of CODEC.

Table 6. Output pin status by the combination of A and B

		Output F	Pin Connectio	n Status	
Setting of A	Setting of B	DIN	BR1	BR2	Remarks
	B1	1	1	1	Initial Setting
٨.4	B2	B2R	1	1	
A1	В3	1	B2R	1	
	B4	1	1	B2R	
	B1	B1R	1	1	
40	B2	B1R or B2R	1	1	DIN *5
A2	В3	B1R	B2R	1	
	B4	B1R	1	B2R	
	B1	1	B1R	1	
۸.0	B2	B2R	B1R	1	
A3	В3	1	B1R or B2R	1	BR1 *5
	B4	1	B1R	B2R	
	B1	1	1	B1R	
A4	B2	B2R	1	B1R	
A4	В3	1	B2R	B1R	
	B4	1	1	B1R or B2R	BR2 *5

*5. When writing is performed in the sequence of setting of A and setting of B, the output status becomes B2R, and when writing is performed in the sequence of setting of B and setting of A, the output status becomes B1R.

key scanning output control and interrupt

WRITE Mode

			Contro	ol Data				Remarks						
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remarks						
0	0	0		0	utput Da	ita		The data set in DB4 to DB0 is output from output pins PO4 to PO0, respectively.						
								The output statuses are held until the data is rewritten.						
								When the data is "0", the output goes to "0", when the data is "1", the output is left open.						
								Initially, PO4 to PO0 are left open.						
1	Χ	Χ	X X X X X				Х	Resets the INTT output and sets to "1".						
								This control data is valid only when written, it is not held.						

Sounder, volume, and tone combination

WRITE Mode

			Contro	ol Data				Combinal	Damanika
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Control	Remarks
0	0	Χ	Χ	Х	Х	0	0	Volume 1 (High)	The setting of volume and tone
						0	1	Volume 2 (Medium)	combination is performed
						1	0	Volume 3 (Low1)	simultaneously, not
						1	1	Volume 4 (Low2)	independently.
			0	0	0	Х	Х	Tone combination setting (Initial setting) by external control (SW0, SW1)	
			0	0	1			Tone combination 1 (1.0 kHz and 1.3 kHz, 16 Hz Wamble period)	Initially the high volume is set,
			0	1	0			Tone combination 2 (0.8 kHz and 1.0 kHz, 16 Hz Wamble period)	and tone combination is set
			0	1	1			Tone combination 3 (0.8 kHz and 1.0 kHz, 8 Hz Wamble period)	externally.
			1	0	1			Tone combination 4 (0.5 kHz and 0.65 kHz, 16 Hz Wamble period)	
			1	1	0			Tone combination 5 (0.4 kHz and 0.5 kHz, 16 Hz Wamble period)	
			1	1	1			Tone combination 6 (0.4 kHz and 0.5 kHz, 8 Hz Wamble period)	

CODEC power down control

WRITE Mode

		(Contor	ol Dat	а			Control	Remarks	
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Control	Remarks	
0	1	Χ	Х	Х	0	0	0	CODEC power-down is controlled by PDC (DB4) during sounder	Data written later is valid.	
								control. (Initial setting)		
								PDC = 0 CODEC power-on		
								PDC = 1 CODEC power-down		
					1	0	1	CODEC Transmit power-down		
					1	1	0	CODEC Receive power-down		
					1	1	1	CODEC Transmit and Receive power-down		
					1	0	0	CODEC power-down release		

MSM6895/6896

WRITE Mode

Gain control

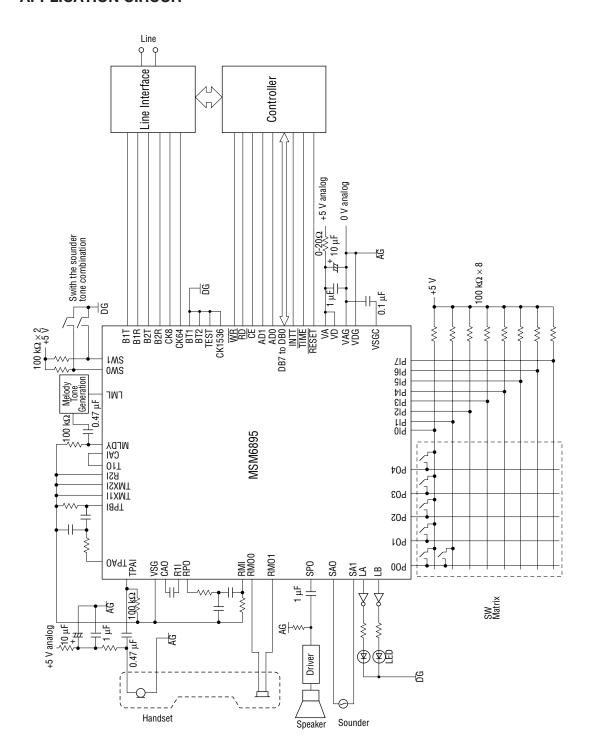
DB7								Control	Damanta
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Control	Remarks
1	0	Χ	Χ	Χ	Χ	0	0	Sets the transmit PB tone and hold tone level at the typical	The gain setting of the transmit path
								value.(Initial setting)	and the receive path can be performed
						0	1	Sets the transmit PB tone and hold tone level by 3 dB below the	simultaneously, not independently.
								typical value.	
						1	Χ	Sets the transmit PB tone and hold tone level by 6 dB below the	
								typical value.	
				0	0	Х	Χ	Sets the receive gain at the typical value. (Initial setting)	
				0	1	Х	Χ	Sets the receive gain by 3 dB above the typical value.	
				1	0	Х	Χ	Sets the receive gain by 6 dB above the typical value.	
				1	1	Х	Χ	Sets the receive gain by 9 dB above the typical value.	

Howler tone color combination

WRITE Mode

Address Data AD1 = 1, AD0 = 0

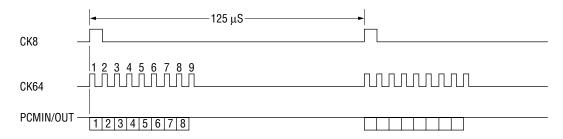
			Contro	ol Data				Control	Remarks
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Control	Remarks
1	1	Χ	Χ	Х	Χ	Х	0	Howler tone frequency: 0.8 kHz	Initial setting
							1	Howler tone frequency: 1.0 kHz and 1.3 kHz, 16 Hz Wamble period	

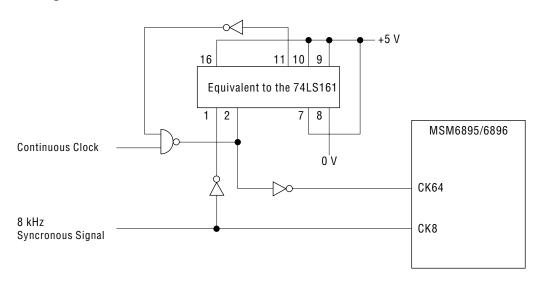

Key scanning data read out

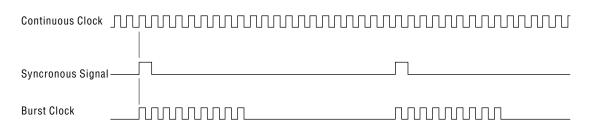
READ Mode

DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Control
PI7	PI6	PI5	PI4	PI3	PI2	PI1	PI0	The data input to the pins PI7 to PI0 is output from DB7 to DB0, respectively.

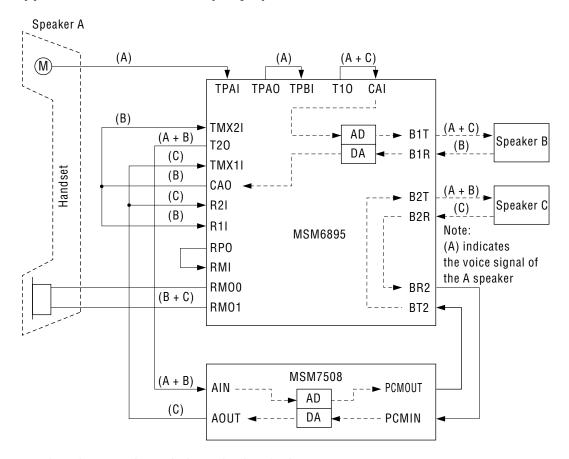
APPLICATION CIRCUIT




Application circuit at the PCM Signal Data Rate of 192, 384, 768, 1536 and 2048 kbps.


BCLOCK signal

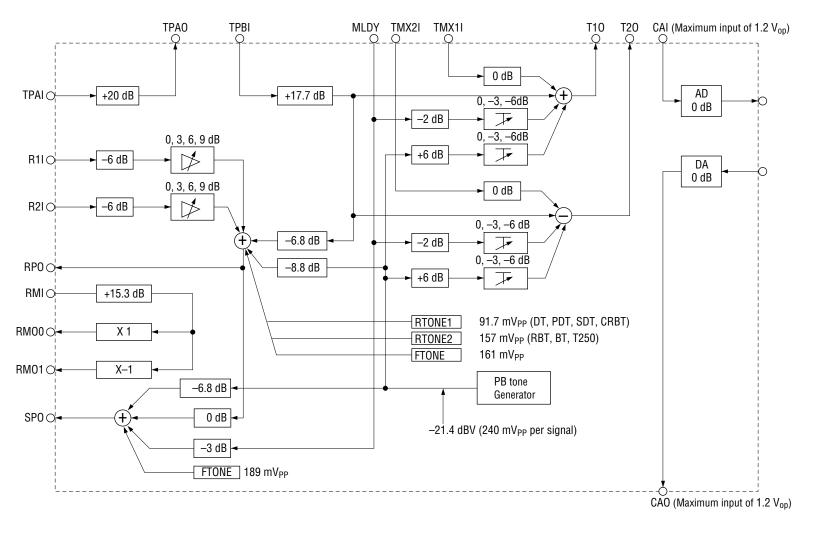
When the PCM signal data rate is one of 192, 384, 768, 1536, and 2048 kbps, input the 9-bit burst clock corresponding to the frequency equivalent to each of the data rates, as CK64 signal.


Burst clock generator

Application Circuit of Three-party Speech Path

Speech path setting (Speech through a handset)

Transmit: TA-4 (LT1 = 1, LMX1 = 1, LMN = 0, MUTN = 1)

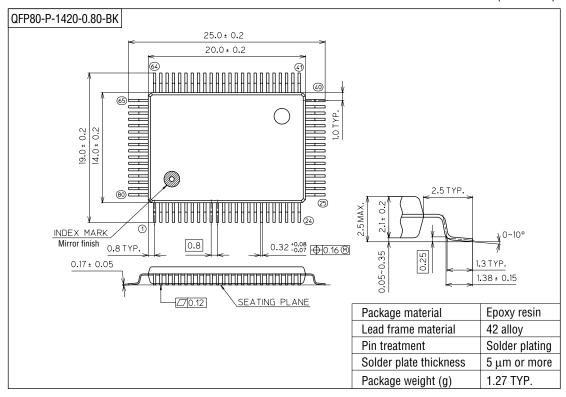

TB-4 (LT2 = 1, LMX2 = 1, LMN = 0, MUTN = 1)

Receive: RP-8 (LT1 = 1, LT2 = 1, LMN = 0, MUTN = 1, LR = 1)

Channel selector control

A2, B4

SPEECH PATH GAIN


RECOMMENDATIONS FOR ACTUAL DESIGN

- To assure proper electrical characteristics, use bypass capacitors with excellent high frequency characteristics for the power supply and keep them as close as possible to the device pins.
- Connect the AG pin and the DG pin each other as close as possible. Connect to the system ground with low impedance.
- Mount the device directly on the board when mounted on PCBs. Do not use IC sockets. If an IC socket is unavoidable, use the short lead type socket.
- When mounted on a frame, use electro-magnetic shielding, if any electro-magnetic wave source such as power supply transformers surround the device.
- Keep the voltage on the V_{DD} pin not lower than -0.3 V even instantaneously to avoid latchup phenomenon when turning the power on.
- Use a low noise (particularly, low level type of high frequency spike noise or pulse noise) power supply to avoid erroneous operation and the degradation of the characteristics of these devices.
- Unused analog input pins must be connected to the VSG pin and unused digital pins must be connected to the GND pin.

PACKAGE DIMENSIONS

(Unit: mm)

Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage.

Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

